Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\frac{z_1}{z_2}=t\Rightarrow \overline{\left(\frac{z_1}{z_2}\right)}=\overline{t}\)
Ta cần chứng minh \(\overline{t}=\frac{\overline{z_2t}}{\overline{z_2}}\Leftrightarrow \overline{t}\overline{z_2}=\overline{tz_2}\)
Đặt \(t=a+bi,z_2=c+di\). Bài toán tương đương với:
\((a-bi)(c-di)=\overline{(a+bi)(c+di)}\Leftrightarrow ac-bd-i(ad+bc)=ac-i(ad+bc)-bd\)
(luôn đúng)
Do đó ta có đpcm
b)
Dựa vào phần a, ta có:
\(\text{VT}^2=\frac{z_1}{z_2}.\overline{\left(\frac{z_1}{z_2}\right)}=\frac{z_1}{z_2}.\frac{\overline{z_1}}{\overline{z_2}}=\frac{|z_1|^2}{|z_2|^2}=\text{VP}^2\)
\(\Rightarrow \text{VT}=\text{VP}\) (cùng dương)
Ta có đpcm
\(\left(\frac{z-1}{2z-i}\right)^4-1=0\Leftrightarrow\left[{}\begin{matrix}\left(\frac{z-1}{2z-i}\right)^2=1\left(1\right)\\\left(\frac{z-1}{2z-i}\right)^2=i^2\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}\frac{z-1}{2z-i}=1\\\frac{z-1}{2z-i}=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}z-1=2z-i\\z-1=-2z+i\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}z=-1+i\\z=\frac{1}{3}+\frac{1}{3}i\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left[{}\begin{matrix}\frac{z-1}{2z-i}=i\\\frac{z-1}{2z-i}=-i\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}z-1=2iz+1\\z-1=-2iz-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z=\frac{2}{5}+\frac{4}{5}i\\z=0\end{matrix}\right.\)
\(\Rightarrow P=\frac{17}{9}\) (ném vào casio bấm)
\(z^2-4z+5=0\Rightarrow\left\{{}\begin{matrix}z_1+z_2=4\\z_1z_2=5\end{matrix}\right.\) theo hệ thức Viet
\(w=\dfrac{z_1+z_2}{z_1z_2}+i.z_1z_2\left(z_1+z_2\right)=\dfrac{4}{5}+i.5.4=\dfrac{4}{5}+20i\)
O M3 M2 M1 P3 P2 P1 A
Gọi \(P_1,P_2\) là giao điểm của đường tròn (0.1) với tia OM1 và OM2
Dựng P3 thuộc đường tròn và có argument cực \(\theta_1,\theta_2\) Chọn M3 thuộc tia OP3, OM3 =OM1.OM2
Gọi z3 là tọa độ phức của M3. Điểm M3(\(r_1r_2;\theta_1+\theta_2\) biểu diễn tích z1z2
Gọi A là điểm biểu diễn của z=1
\(\frac{OM_3}{OM_1}=\frac{OM_2}{1}\Rightarrow\frac{OM_3}{OM_2}=\frac{OM_2}{OA};\widehat{M_2OM_3}=\widehat{AOM_1}\)
Suy ra 2 tam giác OAM1 và OM2M3 đồng dạng