Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :
\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)
\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)
b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)
\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)
\(I=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
\(\Rightarrow I=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n+1\right).\left(2n+3\right)}\right)\)
\(\Rightarrow I=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\right)\)
\(\Rightarrow I=\frac{1}{2}\left(1-\frac{1}{2n+3}\right)\)
\(\Rightarrow I=\frac{1}{2}.\frac{2n+2}{2n+3}\)
\(\Rightarrow I=\frac{n+1}{2n+3}\)
\(I=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right)\left(2n+3\right)}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n+1\right)\left(2n+3\right)}\right)\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}=\frac{1}{1}-\frac{1}{2n+3}\)
\(=\frac{2n+3}{2n+3}-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)
\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{...1}{\left(n-1\right).n}\right)\)
\(N< \frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(N< \frac{1}{4}.\left(1-\frac{1}{n}\right)< \frac{1}{4}.1=\frac{1}{4}\)
=> \(N< \frac{1}{4}\)(đpcm)
Ta có:
\(1.3.5.7.9...\left(2n-1\right)=\frac{\left[1.3.5.7.9....\left(2n-1\right)\right].\left[2.4.6.8...2n\right]}{2.4.6.8....2n}=\frac{1.2.3.4.5.6....2n}{\left(2.1\right).\left(2.2\right).\left(2.3\right)\left(2.4\right)....\left(2.n\right)}\)
=> \(1.3.5.7.9...\left(2n-1\right)=\frac{1.2.3.4.5.6....2n}{\left(2.2.2.....2\right).\left(1.2.3.4.....n\right)}=\frac{\left(1.2.3.4.....n\right)\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}{2^n.\left(1.2.3.4....n\right)}\)
=> \(1.3.5.7.9...\left(2n-1\right)=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n}\)
=> \(\frac{1.3.5.7.9...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}=\frac{1}{2^n}\)(đpcm)
100 + 100 + 100
Các bạn trả lời nhanh nhất mình k cho mà bạn nào trả lời nhanh nhất thì các bạn k cho bạn đấy mình sẽ k lại cho