K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\Rightarrow\frac{abz+bcx+cay}{abc}=0\)

\(\Rightarrow abz+bcx+cay=0\)

\(\Rightarrow\frac{abz+bcx+cay}{xyz}=0\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\Rightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=4\)

\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2\left(\frac{ab}{xy}+\frac{bc}{yz}+\frac{ca}{zx}\right)=4\)

\(\Rightarrow M+2\left(\frac{abz+bcx+cay}{xyz}\right)=4\)

\(\Rightarrow M+2.0=4\Rightarrow M=4\)

Chúc bạn học tốt ! Lê Tài Bảo Châu

10 tháng 2 2018

a, Xét : 196 = 14^2 = (a^2+b^2+c^2) = a^4+b^4+c^4+2.(a^2b^2+b^2c^2+c^2a^2) 

<=> a^4+b^4+c^4 = 196 - 2.(a^2b^2+b^2c^2+c^2a^2)

Xét : 0 = (a+b+c)^2 = a^2+b^2+c^2+2.(ab+bc+ca)

Mà a^2+b^2+c^2 = 14

<=> 2.(ab+bc+ca) = -14

<=> ab+bc+ca = -7

<=> a^2b^2+b^2c^2+c^2a^2+2abc.(a+b+c) = 49

Lại có : a+b+c = 0

<=> a^2b^2+b^2c^2+c^2a^2 = 49

<=> A = a^4+b^4+c^4 = 196 - 2.49 = 98

Tk mk nha

10 tháng 2 2018

b)                \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\)\(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)

\(\Leftrightarrow\)\(x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)

\(\Leftrightarrow\)\(x^2=y^2=z^2=0\)

\(\Leftrightarrow\)\(x=y=z=0\)

Vậy   \(D=0\)

5 tháng 4 2019

Bài 2 : 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)

Mà \(2018=a+b+c\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)

\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)=-ab\left(a+b\right)\)

\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\left(b+c\right)=0\)

TH1 : \(a+b=0\Leftrightarrow a=-b\)

\(M=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{c^{2014}}\)

Mà \(a+b+c=2018\)

\(\Leftrightarrow-b+b+c=2018\)

\(\Leftrightarrow c=2018\)

Khi đó \(M=\frac{1}{2018^{2017}}\)

Các trường hợp còn lại tương tự

Kết quả cuối cùng : \(M=\frac{1}{2018^{2017}}\)

6 tháng 4 2019

Câu hỏi của nguyễn thị phượng - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo bài 2 ở link này nhé!

31 tháng 12 2016

Ta có 

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bxz+cxy=0\)

Ta có

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)

\(\Rightarrow\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

\(\Rightarrow\frac{2xy.abc^2+2yz.a^2bc+2xz.ab^2c}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

\(\Rightarrow\frac{2abc.\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

 Ta có \(cxy+ayz+bxz=0\)

\(\Rightarrow\frac{2abc.\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

\(\Rightarrow\frac{2abc.0}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

\(\Rightarrow1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)=0\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(đpcm\right)\)

30 tháng 12 2016

bài này bạn bình phương vế thứ 2 lên rồi phân k vế 1 là ra đấy

10 tháng 2 2018

khó quá ta

10 tháng 2 2018

Đặt : x/a = m ; y/b = n ; z/c = p

=> m+n+p = 1 ; 1/m+1/n+1/p=0

1/m+1/n+1/p=0

<=> mn+np+pm/mnp=0

<=> mn+np+pm=0

<=> 2mn+2np+2pm=0

Xét : 1 = (m+n+p)^2 = m^2+n^2+p^2+2mn+2np+2pm = m^2+n^2+p^2

=> x^2/a^2+y^2/b^2+z^2/c^2 = 1

=> ĐPCM

Tk mk nha

14 tháng 2 2018

\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\)  C/M thế này cho ít số dễ nhìn 

Quy đồng ta được

\(a^2y\left(x+y\right)+b^2x\left(x+y\right)=xy\left(a^2+2ab+b^2\right)\)

\(a^2yx+a^2y^2+b^2x^2+b^2xy=a^2xy+2abxy+b^2xy\)

rút gọn

\(a^2y^2+b^2x^2=2abxy\)

\(a^2y^2+b^2x^2-2abxy=0\) hằng đẳng thức số 2

\(\left(ay+bx\right)^2=0\) 

\(ay+bx=0\Leftrightarrow ax=-bx\)

vậy \(-bx+bx=0\) đúng 

\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)

14 tháng 2 2018

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)\(\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

Ta có \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{a^2}{ak}+\frac{b^2}{bk}+\frac{c^2}{ck}=\frac{a}{k}+\frac{b}{k}+\frac{c}{k}=\frac{a+b+c}{k}\)(1)

\(\frac{\left(a+b+c\right)^2}{x+y+z}=\frac{\left(a+b+c\right)^2}{ak+bk+ck}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)k}=\frac{a+b+c}{k}\)(2)

Từ (1); (2) => \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)

26 tháng 12 2017

Ta có:   \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)

\(\Leftrightarrow\)\(\frac{bcx+acy+abz}{abc}=0\)

\(\Leftrightarrow\)\(bcx+acy+abz=0\)

           \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)

\(\Leftrightarrow\)\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=4\)

\(\Leftrightarrow\)\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2\left(\frac{ab}{xy}+\frac{ac}{xz}+\frac{bc}{yz}\right)=4\)

\(\Leftrightarrow\)\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=4-2\frac{abz+acy+bcx}{xyz}=4\)                (vì  abz + acy + bcx = 0 )

27 tháng 9 2017

thiếu đề kìa

27 tháng 9 2017

//olm.vn/hoi-dap/question/775639.html

vào đây xem nhé

2 tháng 12 2015

Ta có:

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

\(\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{xyz}{abc}\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(đpcm\right)\)

29 tháng 10 2016
  • 1= (x/a+y/b+z/c)2 = (x/a)+ (y/b)+ (z/c)2 +2(xy/ab+yz/bc+xz/ac) = (x/a)+ (y/b)+ (z/c)+2[(cxy + ayz+bxz)/abc] (1)
  • a/x + b/y + c/z = (ayz+bxz+cxy)/xyz = 0 

           Vì xyz khác 0 nên ayz+bxz+cxy=0 (2) 

  •  Thế (2) vào (1) ta được x2/a+ y2/b2 + z2/c2 + 2(0/abc) = x2/a+ y2/b2 + z2/c2  = 1 ( đpcm ) 
12 tháng 3 2017

1 nha anh !