Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: D
Bài 2:
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)
\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)
Ta có : \(\frac{a}{b}=\frac{c}{d}\)
Nên \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
Suy ra : \(\frac{a}{c}=\frac{a-b}{c-d}\)
Vậy : \(\frac{a-b}{a}=\frac{c-d}{c}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk,c=dk
a,Ta có \(\frac{a-b}{a}-\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}\frac{k-1}{k}.1\)
Tương tự ta có \(\frac{c-d}{c}=\frac{k-1}{k}.2\)
Từ (1) và (2) suy ra đều phải chứng minh .
b,Ta có \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}.3\)
Tương tự ta có \(\frac{a-b}{c-b}=\frac{b}{d}.4\)
Từ (3) và (4) suy ra đều phải chứng minh
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\Leftrightarrow\frac{bkb}{dkd}=\left(\frac{bk-b}{dk-d}\right)^2\)
Xét VT \(\frac{bkb}{dkd}=\frac{b^2}{d^2}\left(1\right)\)
Xét VP \(\left(\frac{bk-b}{dk-d}\right)^2=\left(\frac{b\left(k-1\right)}{d\left(k-1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) -->Đpcm
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Ta có:
\(a=b.k\)
\(c=d.k\)
Theo bài ra ta có:
\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (1)
\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{b.k-b}{d.k-d}\right)^2=\left[\frac{b.\left(k-1\right)}{d.\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (2)
Từ (1) và (2) suy ra \(\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)
\(\Rightarrowđpcm\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\)\(\frac{a+b+c}{b+c+d}.\)\(\frac{a+b+c}{b+c+d}.\)\(\frac{a+b+c}{b+c+d}.\)
\(\Rightarrow\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
Vì \(\frac{a}{b}< \frac{c}{d}\)
⇒ \(ad< bc\)
⇒ \(2018ad< 2018bc\)
⇒ \(2018ad+cd< 2018bc+cd\)
⇒ \(\left(2018a+c\right)d< \left(2018b+d\right)c\)
⇒ \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)
Vậy \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\) (ĐPCM)