K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Ta có: \(\frac{A}{B}+\frac{A}{C}=\frac{AC+AB}{BC}=\frac{A^2}{BC}\)

=> AC+AB=A2

=>A(B+C)=AxA

=> A=B+C 

Ta có:a/b<c/d<=>a.d<b.c

<=>2018a.d<2018b.c

<=>2018a.d+c.d<2018b.c+d.c

<=>d(2018a+c)<c(2018b+d)

<=>2018a+c/2018b+d<c/d(dpcm)

Ta có: Để \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\Rightarrow\left(2018\cdot a+c\right)\cdot d< \left(2018\cdot b+d\right)\cdot c\)

\(2018\cdot a\cdot d+c\cdot d< 2018\cdot b\cdot c+c\cdot d\)

\(2018\cdot a\cdot d< 2018\cdot b\cdot c\)(bỏ cả 2 vế đi \(c\cdot d\))(gọi là (1))

Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow a\cdot d< b\cdot c\Rightarrow2018\cdot a\cdot d< 2018\cdot b\cdot c=\left(1\right)\)Mà (1) bằng \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\) (điều phải chứng minh)

19 tháng 3 2017

sao giờ lớp 6 toàn học kiến thức lớp 8 thế

cái đầu tiên, chuyển 2ab sang thì vế trái phân tích được thành (a-b)^2 lớn hơn bằng 0

cái thứ 2, tách ra được a/c+b/c+a/b+c/b+b/a+c/a=\(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{a}{c}+\frac{c}{a}\)\(=\frac{a^2+b^2}{ab}\)cộng với 2 cái kia nữa

có a^2+b^2 \(\ge\)2ab suy ra phân số lớn hơn bằng 2, 2 cái kia tương tự suy ra S>=6

11 tháng 4 2021

Lời giải

Giải bài 77 trang 39 SGK Toán 6 Tập 2 | Giải toán lớp 6

Giải bài 77 trang 39 SGK Toán 6 Tập 2 | Giải toán lớp 6

Giải bài 77 trang 39 SGK Toán 6 Tập 2 | Giải toán lớp 6

Giải bài 77 trang 39 SGK Toán 6 Tập 2 | Giải toán lớp 6

Giải bài 77 trang 39 SGK Toán 6 Tập 2 | Giải toán lớp 6

18 tháng 4 2021

A = -4/5x(1/2+1/3+1/4)= -4/5x1 = -4/5
B = 6/19 x ( 3/4+4/3+-1/2)= 6/19x 19 = 6
C = 2002/2003x(3/4+5/6-19/12)=2003/2002x0=0

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)

Vậy \(A>\frac{1}{10}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)

\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)

\(VayA>\frac{1}{100}=B\)

Y
17 tháng 5 2019

a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

b) b = a - c => b + c = a

\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

17 tháng 5 2019

Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)

7 tháng 7 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

Nên \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

 Suy ra : \(\frac{a}{c}=\frac{a-b}{c-d}\)

Vậy : \(\frac{a-b}{a}=\frac{c-d}{c}\)

18 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk,c=dk

a,Ta có \(\frac{a-b}{a}-\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}\frac{k-1}{k}.1\)

Tương tự ta có \(\frac{c-d}{c}=\frac{k-1}{k}.2\)

Từ (1) và (2) suy ra đều phải chứng minh .

b,Ta có \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}.3\)

Tương tự ta có \(\frac{a-b}{c-b}=\frac{b}{d}.4\)

Từ (3) và (4) suy ra đều phải chứng minh

4 tháng 3 2018

a)   Ta có:     \(\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a.a}{bc}\)  (thay b+c = a)             (1)

                     \(\frac{a}{b}\times\frac{a}{c}=\frac{a.a}{bc}\)  (2)

Từ (1) và (2) suy ra:        \(\frac{a}{b}+\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\)  (đpcm)

b)     \(c=a+b\)\(\Rightarrow\)\(a=c-b\)

Ta có:   \(\frac{a}{b}-\frac{a}{c}=\frac{ac-ab}{bc}=\frac{a\left(c-b\right)}{bc}=\frac{a^2}{bc}\)  (thay c-b = a)          (3)

              \(\frac{a}{b}\times\frac{a}{c}=\frac{a^2}{bc}\)   (4)

Từ (3) và (4) suy ra:    \(\frac{a}{b}-\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\)   (đpcm)

24 tháng 3 2017

\(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

Xét Hiệu : \(\frac{a}{b}.\frac{a}{c}-\left(\frac{a}{b}+\frac{a}{c}\right)\)

\(=\frac{a^2}{bc}-\frac{ac+ab}{bc}\)

\(=\frac{a^2}{bc}-\frac{a\left(c+b\right)}{bc}\)

\(=\frac{a^2}{bc}-\frac{a^2}{bc}\)  \(\left(c+b=a\right)\)

\(=0\)

\(\Rightarrow\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\) (ĐPCM)

24 tháng 3 2017

Ta có:

\(VT=\frac{a}{b}.\frac{a}{c}=\frac{aa}{bc}=\frac{a^2}{bc}\)

\(VP=\frac{a}{b}+\frac{a}{c}=\frac{ac}{bc}+\frac{ab}{bc}=\frac{a\left(c+b\right)}{bc}=\frac{aa}{bc}=\frac{a^2}{bc}\)

\(\Rightarrow VT=VP\)

Vậy nếu \(c+b=a\) thì \(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\) (Đpcm)