K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{2b+c+2c+a+2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{1}{3\left(a+b+c\right)}=\frac{1}{3}\)

20 tháng 9 2017

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2c+b}=\frac{a+b+c}{2b+c+2c+a+2c+b}\)\(=\frac{a+b+c}{3a+3b+3c}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)

Vậy ...

11 tháng 12 2016

Nửa chu vi hình chữ nhật là:

32:2=16(cm)

Gọi chiều dài là a 

     Chiều rộng là b

Theo đề ta có: \(\frac{b}{a}=0,6\)

hay \(\frac{b}{a}=\frac{6}{10}\)

\(\Rightarrow\frac{b}{6}=\frac{a}{10}\)

\(\frac{b+a}{6+10}=\frac{16}{16}\)\(\Rightarrow\)\(\frac{b}{6}=\frac{a}{10}=1\)

b= 1.6=6

a=1.10=10

Chiều dài là 10 cm

Chiều rộng là 6 cm

11 tháng 10 2015

1/ áp dụng tính chất dãy tỉ số bằng nhau, ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1=>a=b=c\)

2/ áp dụng tính chất dãy tỉ số bằng nhau, ta có \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{1}{3}\)

3/ áp dụng tính chất dãy tỉ số bằng nhau, ta có \(\frac{a}{b}=\frac{b-2011c}{c}=\frac{2012c}{a}=\frac{a+b+c}{b+c+a}=1=>a=b\)

7 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có : a/2b+c = b/2c+a = c/2a+b = a+b+b/2b+c+2c+a+2a+b = 1/3

=> a/2b+c + b/2c+a + c/2a+b = 1/3 + 1/3 + 1/3 = 1

k mk nha

12 tháng 3 2019

\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=2\)Từ đây tự làm nốt nhé

12 tháng 3 2019

Làm tiếp hộ mình với huhu

21 tháng 12 2019

Có: \(\frac{3a+b+2c}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)

\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)

\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)

\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

\(\Rightarrow2a+c=2b=b+c\)

\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)

Thay vào biểu thức trên , ta được:

\(P=\)\(\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}=9\)

Vậy \(P=9\)