Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì HN\(\perp\)AC
HM \(\perp\)AB
Gọi O là giao điểm MN và HA
=> HMA = MAN = HMA = 90°
Xét tứ giác MHNA ta có :
HMA = MAN = HMA = 90°
=> MHNA là hình chữ nhật
=> MH = AN ( tính chất)
=> HMA = MAN = HMA = MHN = 90°
Mà AH\(\perp\)BC
Mà ta thấy :
MHA + AHN = MHN = 90°
CHN + AHN = AHC = 90°
=> MHA = NHC ( cùng phụ với AHN )
=> MHA = NHC = AHN
Xét ∆AHC có :
HN là phân giác ( AHN = CHN )
HN \(\perp\)AC
AHC = 90°
=> ∆AHC vuông cân tại H ( tính chất)
=> HN là trung tuyến ∆ vuông cân AHC
=> HN = AN = NC ( tính chất đường truyến trong ∆ vuông)
Mà MH = AN (cmt)
=> MH = HN
=> ∆MHN cân tại H
Xét ∆MHN ta có :
Mà HA là phân giác ( MHA = NHA )
=> HA là đường cao vừa là trung tuyến
=> HA \(\perp\)MN
Hay HO\(\perp\)MN
=> HON = 90°
Mà CHA = 90° (AH \(\perp\)BC )
=> HON = CHA = 90°
Mà 2 góc này ở vị trí đồng vị
=> BC//MN
=> ABC = NMA ( đồng vị)
M và N lần lượt là hình chiếu của H trên BC và AC. Bn giải hộ mk vs
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
a) Xét tứ giác ABCD có:
. M là trung điểm của BC ( AM là đường trung tuyến)
. M là tđ của AD ( gt)
Vậy: ABCD là hbh ( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)
mà \(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A)
--> ABCD là hình chữ nhật ( hbh có 1 góc vuông)
b) Ta có: \(IA\perp AC\)
\(CD\perp AC\)
\(\Rightarrow\) IA // CD
Xét tứ giác BIDC có:
. IA // CD (cmt)
\(\Rightarrow\) IB // CD ( B ϵ IA )
. AB =CD ( cạnh đối hcn ABCD )
mà AB = IB ( tính chất đối xứng)
\(\Rightarrow\) IB = CD ( cùng = AB )
Vậy: BIDC là hbh ( tứ giác có 2 cạnh đối vừa //, vừa = nhau)
\(\Rightarrow\) BC // ID ( cạnh đối hbh)
" đề câu c sai nha bạn"
câu c nhé
gọi DE giao AC =O, ta có tam giác AEC cân tại E, cậu tự chứng minh
thì góc EAC=gócECA, mà góc ECA=góc CAD ( so le trong)
=> AO là phân giác góc EAD
mặt khác cậu dễ dàng chứng minh DE là trung trực của AC => AO vuông góc với ED
tam giác ADE có phân giác đồng thời là trung tuyến => cân
rồi cậu tự chúng minh tiếp nhé