Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)
\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)
\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)
\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)
Xin lỗi mình chỉ làm được câu a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\)
\(\Rightarrow\dfrac{5z-25}{30}=\dfrac{3x-3}{6}=\dfrac{4y+12}{16}\\ =\dfrac{\left(5z-25\right)-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\\ =\dfrac{5z-25-3x+3-4y-12}{8}\\ =\dfrac{5z-3x-4y-34}{8}\\ \dfrac{50-34}{8}=2\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{5z-25}{30}=2\\\dfrac{3x-3}{6}=2\\\dfrac{4y+12}{16}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5z=85\\3x=15\\4y=20\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z=17\\x=5\\y=5\end{matrix}\right.\)
\(x-y+100=z\Rightarrow x-y-z=-100\)
\(\dfrac{x}{4}=\dfrac{y}{3}\Rightarrow\dfrac{x}{20}=\dfrac{y}{15};\dfrac{y}{5}=\dfrac{z}{3}\Rightarrow\dfrac{y}{15}=\dfrac{z}{9}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
\(\Rightarrow x=20.25=500;y=15.25=375;z=9.25=225\)
b/ \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\)
\(\Rightarrow\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}=\dfrac{5z-25-4y-12-3x+3}{30-16-6}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=2\\\dfrac{y+3}{4}=2\\\dfrac{z-5}{6}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=5\\z=17\end{matrix}\right.\)
c/ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=a\Rightarrow\left\{{}\begin{matrix}x=2a\\y=3a\\z=5a\end{matrix}\right.\) \(\Rightarrow xyz=2a.3a.5a=30a^3=-30\Rightarrow a^3=-1\Rightarrow a=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2a=-2\\y=3a=-3\\z=5a=-5\end{matrix}\right.\)
d/ \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\Rightarrow\dfrac{2x}{2,2}=\dfrac{y}{1,3}=\dfrac{z}{1,4}=\dfrac{2x-y}{2,2-1,3}=\dfrac{5,5}{0,9}=\dfrac{55}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1,1.55}{9}=\dfrac{121}{18}\\y=\dfrac{1,3.55}{9}=\dfrac{143}{18}\\z=\dfrac{1,4.55}{9}=\dfrac{77}{9}\end{matrix}\right.\) Nghi ngờ bạn chép đề câu này sai, số xấu quá
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
Có: \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\)
<=> \(\dfrac{3\left(x-1\right)}{3.2}=\dfrac{4\left(y+3\right)}{4.4}=\dfrac{5\left(z-5\right)}{6.5}\)
<=> \(\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}\)
mà 5z-3x-4y=50
ADTCDTSBN ta có:\(\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}=\dfrac{5z-25-\left(4y+12\right)-\left(3x-3\right)}{30-16-6}=\dfrac{5z-25-4y-12-3x+3}{8}=\dfrac{\left(5z-4y-3x\right)-\left(25+12-3\right)}{8}=\dfrac{50-34}{8}=2\)
Do đó: \(\dfrac{3x-3}{6}=2\) <=> \(\dfrac{x-1}{2}=2\) <=> x-1=4 <=> x=5
\(\dfrac{4y+12}{16}=2\) <=> \(\dfrac{y+3}{4}=2\) <=> y+3=8<=> y=5
\(\dfrac{5z-25}{30}=2\) <=> \(\dfrac{z-5}{6}=2\) <=> z-5=12 <=> z=17
Vậy x=5 , y=5 , z=17
x/3=y/4 -> y=4x/3 (1)
y/5=z/6 -> y=5z/6 (2)
(1)+(2) -> x=5z/8 thay vào M=\(\dfrac{2.\dfrac{5z}{8}+3.\dfrac{5z}{6}+4z}{3.\dfrac{5z}{8}+4.\dfrac{5z}{6}+5z}\)=\(\dfrac{186}{245}\)
Ta có: \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) ; \(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)
=>\(\dfrac{x}{15}\)=\(\dfrac{y}{20}\)=\(\dfrac{z}{24}\)=k
=>x=15k
y=20k
z=24k
Thế x=15k; y=20k; z=24k vào biểu thức A, ta có:
\(\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}\)=\(\dfrac{30k+60k+96k}{45k+60k+120k}\)=\(\dfrac{k.\left(30+60+96\right)}{k.\left(45+60+120\right)}\)=\(\dfrac{186}{225}\)=\(\dfrac{62}{75}\)
\(\dfrac{x-2}{4}=\dfrac{y+1}{5}=\dfrac{z+3}{7}\)
\(\Rightarrow\dfrac{2\left(x-2\right)}{8}=\dfrac{y+1}{5}=\dfrac{2\left(z+3\right)}{14}\)
\(\Rightarrow\dfrac{2x-4}{8}=\dfrac{y+1}{5}=\dfrac{2z+6}{14}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(=\dfrac{2x-4+y+1-2z-6}{8+5-14}\)
\(=\dfrac{2x+y-2z-9}{-1}\)
\(=\dfrac{7-9}{-1}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-2}{4}=2\Rightarrow x-2=8\Rightarrow x=10\\\dfrac{y+1}{5}=2\Rightarrow y+1=10\Rightarrow y=9\\\dfrac{z+3}{7}=2\Rightarrow z+3=14\Rightarrow z=11\end{matrix}\right.\)
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\Rightarrow\dfrac{5\left(z-5\right)}{30}=\dfrac{3\left(x-1\right)}{6}=\dfrac{4\left(y+3\right)}{16}=\dfrac{5\left(z-5\right)-3\left(x-1\right)-4\left(y+3\right)}{30-6-16}=\dfrac{5z-25-3x+3-4y-12}{8}=\dfrac{\left(5z-3x-4y\right)+\left(-25+3-12\right)}{8}=\dfrac{50+\left(-34\right)}{8}=\dfrac{16}{8}=2\)\(\Rightarrow\dfrac{x-1}{2}=2\Rightarrow x=5\\ \dfrac{y+3}{4}=4\Rightarrow y=13\\ \dfrac{z-5}{6}=2\Rightarrow z=17\)
Theo bài ra ta có :
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\\ \Rightarrow\dfrac{3\left(x-1\right)}{6}=\dfrac{4\left(y+3\right)}{16}=\dfrac{5\left(z-5\right)}{30}\\ \Rightarrow\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}\\ \Rightarrow\dfrac{5z-25}{30}=\dfrac{3x-3}{6}=\dfrac{4y+12}{16}\)
\(5z-3x-4y=50\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{5z-25}{30}=\dfrac{3x-3}{6}=\dfrac{4y+12}{16}\\ =\dfrac{\left(5z-25\right)-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\\ =\dfrac{5z-25-3x+3-4y-12}{8}\\ =\dfrac{\left(5z-3x-4y\right)-\left(25-3+12\right)}{8}\\ =\dfrac{50-34}{8}\\ =\dfrac{16}{8}\\ =2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow3x=15\Rightarrow x=5\\\dfrac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow4y=20\Rightarrow y=5\\\dfrac{5z-25}{30}=2\Rightarrow5z-25=60\Rightarrow5z=85\Rightarrow z=17\end{matrix}\right.\)
\(\text{Vậy }x=5\\ y=5\\ z=17\)