Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì EF là đường trung trực của AB nên FA = FB ( Theo định lý về t/c đường trung trực của đoạn thẳng)
b)Vì \(\hept{\begin{cases}EF\perp AB\\AC\perp AB\end{cases}}\Rightarrow EF//AC\)
Vì \(\hept{\begin{cases}EF//AC\\FH\perp Ac\end{cases}}\Rightarrow EF\perp FH\left(đpcm\right)\)
c) Xét \(\Delta AEH\)và \(\Delta HFE\)có:
\(\widehat{AHE}=\widehat{HEF}\)(so le trong)
AF: cạnh chung
\(\widehat{AEH}=\widehat{HFE}\)(so le trong,\( AE//FH\))
Suy ra \(\Delta AEH=\)\(\Delta HFE\left(c-g-c\right)\)
Suy ra FH = AE ( hai cạnh tương ứng)
d) Chứng minh EH là đường trung bình sau đó suy ra đpcm
a: Ta có: F nằm trên đường trung trực của AB
nên FA=FB
b: Xét tứ giác AEFH có \(\widehat{AEF}=\widehat{AHF}=\widehat{HAE}=90^0\)
nên AEFH là hình chữ nhật
Suy ra: FH\(\perp\)FE
c: Ta có: AEFH là hình chữ nhật
nên FH=AE
a) Vì đường trung trực của AB cắt AB tại E và BC tại F nên F thuộc đường trung trực của AB
=> FA=FB ( tính chất của điểm thuộc đường trung trực của 1 đoạn thẳng)
b) Ta có : AB vuông góc AC ; FH vuông góc AC
=> AB// FH
Vì đường trung trực của AB cắt AB tại E và BC tại F nên FE vuông góc AB
Lại có: AB// FH ; FE vuông góc AB => FH vuông góc FE
c) Xét tam giác AEF và tam giác FHA có:
góc AEF= góc FHA (=90 độ)
AF chung
góc EAF= góc HFA ( 2 góc so le trong của AB// FH bị cắt bởi AF)
=> tam giác AEF = tam giác FHA ( cạnh huyền, góc nhọn)
=> AE= FH ( 2cạnh tương ứng)
d) Ta có: FA= FB (cmt) => tam giác FAB cân tại F => góc B= góc FAB
Xét tam giác ABC vuông tại A nên góc B+góc C= 90 độ
mà góc FAB+ góc FAC= góc BAC= 90 độ
=> góc C= góc FAC ( cùng phụ với 2 góc bằng nhau)=> tam giác FAC cân tại F => FA=FC
Mặt khác FA= FB (cmt) => FC=FB ( =FA) => F là trung điểm BC => FB= BC/2 *
Ta có: BE =EA (Vì đường trung trực của AB cắt AB tại E) ; EA= FH (cmt)=> BE= FH
Lại có: FH vuông góc FE (cmt) => góc EFH = 90 độ
Xét tam giác BEF và tam giác HFE có:
EF chung
góc BEF =góc EFH (= 90 độ)
BE= FH (cmt)
=> tam giác BEF = tam giác HFE (c.g.c)
=> BF= HE ( 2cạnh tương ứng) **
=> góc BFE = góc HEF ( 2 góc tương ứng)
mà góc BFE và góc HEF nằm ở vị trí so le trong đối với EH và BC bị FE cắt=> EH// BC
Từ * và ** => EH= BC/2
a) Ta có: Đường trung trực của AB cắt BC tại F(gt)
⇒F nằm trên đường trung trực của AB
⇒FA=FB(tính chất đường trung trực của một đoạn thẳng)
b) Ta có: Đường trung trực của AB cắt BC tại F và AB tại E(gt)
⇔FE là đường trung trực của AB
⇔FE⊥AB
Ta có: HF⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: HF//AB(định lí 1 từ vuông góc tới song song)
Ta có: HF//AB(cmt)
FE⊥AB(cmt)
Do đó: HF⊥EF(định lí 2 từ vuông góc tới song song)
c) Xét tứ giác AHFE có
\(\widehat{AHF}=90^0\)(FH⊥AC)
\(\widehat{HAE}=90^0\)(ΔABC vuông tại A)
\(\widehat{FEA}=90^0\)(FE⊥AB)
Do đó: AHFE là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
⇒FH=AE(hai cạnh đối trong hình chữ nhật AHFE)
A B C F E H
a) 2 tam giác FBE và FAE bằng nhau (có thể tự chứng minh đc)
=> AF=FB(2 cạnh tương ứng)
b)Xét tứ giác AFHA có 3 góc đã cho là góc vuông => AEFH là hcn=> EF vuông góc vs FH
c) Do AEFH là hcn => EA=FH (2 cạnh đối)
d)Do tam giác ABF cân tại F nên FE cũng là đường phân giác=> góc BFE=góc AFE
mà góc AFE=góc HEF (do AEFH là hcn)
=> góc BFE=góc HEF=> EH song song vs BC(2 góc sole trong)
* Ta có:
EH song song vs BF và EB song song vs FH => EBFH là hbh => EH=BF(2 cạnh đối)(1)
EF song song vs AC và EF đi qua trung điểm của AB => EF đi qua trung điểm của BC (t/c đường tb đảo)=> BF=1/2.BC(2)
Từ (1) và (2)=> đpcm
Có đúng ko vậy bn ?