K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018


A B C F E H
a) 2 tam giác FBE và FAE bằng nhau (có thể tự chứng minh đc)
=> AF=FB(2 cạnh tương ứng)
b)Xét tứ giác AFHA có 3 góc đã cho là góc vuông => AEFH là hcn=> EF vuông góc vs FH
c) Do AEFH là hcn => EA=FH (2 cạnh đối)
d)Do tam giác ABF cân tại F nên FE cũng là đường phân giác=> góc BFE=góc AFE
mà góc AFE=góc HEF (do AEFH là hcn)
=> góc BFE=góc HEF=> EH song song vs BC(2 góc sole trong)
* Ta có:
EH song song vs BF và EB song song vs FH => EBFH là hbh => EH=BF(2 cạnh đối)(1)
EF song song vs AC và EF đi qua trung điểm của AB => EF đi qua trung điểm của BC (t/c đường tb đảo)=> BF=1/2.BC(2)
Từ (1) và (2)=> đpcm

Có đúng ko vậy bn ?

3 tháng 4 2018

Đua nào giai đi tao

21 tháng 4 2018

tui ko biết bài này

6 tháng 3 2020

me, t chưa hc định lí Pitago

8 tháng 3 2020

mô phật, còn mấy bài nữa cơ

9 tháng 8 2019

   

a) Vì EF là đường trung trực của AB nên FA = FB ( Theo định lý về t/c đường trung trực của đoạn thẳng)

b)Vì \(\hept{\begin{cases}EF\perp AB\\AC\perp AB\end{cases}}\Rightarrow EF//AC\)

Vì \(\hept{\begin{cases}EF//AC\\FH\perp Ac\end{cases}}\Rightarrow EF\perp FH\left(đpcm\right)\)

c) Xét \(\Delta AEH\)và \(\Delta HFE\)có:

           \(\widehat{AHE}=\widehat{HEF}\)(so le trong)

            AF: cạnh chung

            \(\widehat{AEH}=\widehat{HFE}\)(so le trong,\( AE//FH\))

Suy ra \(\Delta AEH=\)\(\Delta HFE\left(c-g-c\right)\)

Suy ra FH = AE ( hai cạnh tương ứng)

d) Chứng minh EH là đường trung bình sau đó suy ra đpcm

25 tháng 4 2021

Bạn đã c/m EA//FH đâu mà <AHE=<HEF

17 tháng 7 2019

a. Xét tam giác BFA cs: FE là đường trung trực đồng thời là đường cao

=> tam giác BFA cân tại F=>BF=FA

a: Ta có: F nằm trên đường trung trực của AB

nên FA=FB

b: Xét tứ giác AEFH có \(\widehat{AEF}=\widehat{AHF}=\widehat{HAE}=90^0\)

nên AEFH là hình chữ nhật

Suy ra: FH\(\perp\)FE

c: Ta có: AEFH là hình chữ nhật

nên FH=AE

5 tháng 4 2016

a) Vì đường trung trực của AB cắt AB tại E và BC tại F nên F thuộc đường trung trực của AB
=> FA=FB ( tính chất của điểm thuộc đường trung trực của 1 đoạn thẳng)
b) Ta có : AB vuông góc AC ; FH vuông góc AC
=> AB// FH 
Vì đường trung trực của AB cắt AB tại E và BC tại F nên FE vuông góc AB
Lại có: AB// FH ; FE vuông góc AB => FH vuông góc FE
c) Xét tam giác AEF và tam giác FHA có:
góc AEF= góc FHA (=90 độ)
AF chung
góc EAF= góc HFA ( 2 góc so le trong của AB// FH bị cắt bởi AF)
=> tam giác AEF = tam giác FHA ( cạnh huyền, góc nhọn)
=> AE= FH ( 2cạnh tương ứng)
d) Ta có: FA= FB (cmt) => tam giác FAB cân tại F => góc B= góc FAB
Xét tam giác ABC vuông tại A nên góc B+góc C= 90 độ
mà góc FAB+ góc FAC= góc BAC= 90 độ
=> góc C= góc FAC ( cùng phụ với 2 góc bằng nhau)=> tam giác FAC cân tại F => FA=FC
Mặt khác FA= FB (cmt) => FC=FB ( =FA) => F là trung điểm BC => FB= BC/2 *
Ta có: BE =EA (Vì đường trung trực của AB cắt AB tại E) ; EA= FH (cmt)=> BE= FH 
Lại có: FH vuông góc FE (cmt) => góc EFH = 90 độ
Xét tam giác BEF và tam giác HFE có:
EF chung
góc BEF =góc EFH (= 90 độ)
BE= FH (cmt)
=> tam giác BEF = tam giác HFE (c.g.c)
=> BF= HE ( 2cạnh tương ứng) **
=> góc BFE = góc HEF ( 2 góc tương ứng)
mà góc BFE và góc HEF nằm ở vị trí so le trong đối với EH và BC bị FE cắt=> EH// BC
Từ * và ** => EH= BC/2

2 tháng 3 2018

bạn ơi có thể vẽ hình cho mik đc ko 

a) Ta có: Đường trung trực của AB cắt BC tại F(gt)

⇒F nằm trên đường trung trực của AB

⇒FA=FB(tính chất đường trung trực của một đoạn thẳng)

b) Ta có: Đường trung trực của AB cắt BC tại F và AB tại E(gt)

⇔FE là đường trung trực của AB

⇔FE⊥AB

Ta có: HF⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: HF//AB(định lí 1 từ vuông góc tới song song)

Ta có: HF//AB(cmt)

FE⊥AB(cmt)

Do đó: HF⊥EF(định lí 2 từ vuông góc tới song song)

c) Xét tứ giác AHFE có

\(\widehat{AHF}=90^0\)(FH⊥AC)

\(\widehat{HAE}=90^0\)(ΔABC vuông tại A)

\(\widehat{FEA}=90^0\)(FE⊥AB)

Do đó: AHFE là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

⇒FH=AE(hai cạnh đối trong hình chữ nhật AHFE)