Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sai đề, điểm đối xứng của H nhưng H ở đâu, đầu bài ko thấy cho
a. ta có: góc DAB =góc BAH, góc EAC = góc CAH
=> góc DAE = gocsDAB + góc BAH + góc CAH + góc CAE = 2 góc BAH + 2 góc CAH = 2. (góc BAH + góc CAH) = 2 góc BAC = 2.90độ = 180 độ
=> A, D, E thẳng hàng
b. Dễ CM: AD=AH, BD=BH => \(\Delta ADB=\Delta AHB\left(c-c-c\right)\Rightarrow\widehat{ADB}=\widehat{AHB}=90đ\\ \)
CMTT có: góc AEC = 90độ
=> BD//EC
=> BDEC là hình thang vuông
c, Từ phần b có: BD=BH, CE=CH
Mà BC=BH+CH => BC=BD+CE
a) D,E đối xứng H qua AB,AC => AB,AC là trung trực của HD và HE
Dùng các tính chất của đường trung trực dễ dàng có \(\Delta ABH=\Delta ABD\)và \(\Delta ACH=\Delta ACE\)
=> \(\hept{\begin{cases}\widehat{BAD}=\widehat{BAH}\\\widehat{CAE}=\widehat{CAH}\end{cases}}\)Xét\(\widehat{DAE}=\widehat{BAD}+\widehat{BAH}+\widehat{CAE}+\widehat{CAH}=2\left(\widehat{BAH}+\widehat{CAH}\right)=2\widehat{BAC}=2.90^0=180^0\)
=>A,D,E thẳng hàng
b) Có \(\Delta ABH=\Delta ABD\)và \(\Delta ACH=\Delta ACE\)=>\(\hept{\begin{cases}\widehat{AEC}=\widehat{AHC}=90^0\\\widehat{ADB}=\widehat{AHB}=90^0\end{cases}}\)=>đpcm
c) Có \(\Delta ABH=\Delta ABD\)và \(\Delta ACH=\Delta ACE\)=>\(\hept{\begin{cases}BD=BH\\CE=CH\end{cases}\Rightarrow BD+CE=BH+CH=BC}\)
Hình bạn tự vẽ nhé
a, Ta có: D đối xứng với H qua AB \(\Rightarrow\)AB là đường trung trực mà A \(\in\)AB \(\Rightarrow AD=AH\)(1)
Tương tự ta có: \(AH=AE\)(2)
Từ (1), (2) \(\Rightarrow AD=AE\)
\(\Delta ADH\)có: \(AD=AH\left(cmt\right)\Rightarrow\Delta ADH\)cân tại A có AB là đường trung trực \(\Rightarrow\)AB là phân giác của \(\widehat{DAH}\)\(\Rightarrow\widehat{DAB}=\widehat{BAH}\)
Chứng minh tương tự với \(\Delta AHE\)\(\Rightarrow\)AC là phân giác của \(\widehat{HAE}\)\(\Rightarrow\widehat{HAC}=\widehat{CAE}\)
\(\Delta ABC\)có: \(\widehat{BAH}+\widehat{HAC}=90^o\)
Ta có: \(\widehat{DAB}+\widehat{BAH}+\widehat{HAC}+\widehat{CAE}=\widehat{DAE}\)
hay \(2\widehat{BAH}+2\widehat{HAC}=\widehat{DAE}\)
\(2\left(\widehat{BAH}+\widehat{HAC}\right)=\widehat{DAE}\)
\(2.90^o=\widehat{DAE}=180^o\)
\(\Rightarrow\)D, A, E thẳng hàng
mà \(AD=AE\left(cmt\right)\)
\(\Rightarrow\)A là trung điểm của DE
b, Ta có: AB là đường trung trực mà B \(\in\)AB \(\Rightarrow BD=BH\)
Tương tự ta có: \(CH=CE\)
Xét \(\Delta ADB\)và \(\Delta AHB\)có:
AB chung
\(AD=AH\left(cmt\right)\)
\(DB=BH\left(cmt\right)\)
\(\Rightarrow\Delta ADB=\Delta AHB\left(c-c-c\right)\)\(\Rightarrow\widehat{AHB}=\widehat{ADB}=90^o\Rightarrow BD\perp DE\)
Chứng minh tương tự ta có: \(\Delta AHC=\Delta AEC\left(c-c-c\right)\)\(\Rightarrow\widehat{AHC}=\widehat{AEC}=90^o\Rightarrow EC\perp DE\)
Ta có: \(BD\perp DE\left(cmt\right)\)
\(EC\perp DE\left(cmt\right)\)
\(\Rightarrow BD//EC\)
Tứ giác BDEC có: \(BD//EC\left(cmt\right)\)\(\Rightarrow\)BDEC là hình thang có \(\widehat{BDE}=\widehat{DEC}=90^o\Rightarrow\)BDEC là hình thang vuông
a/ D đối xứng với H qua AB
⇒ AB là đường trung trực của DH ⇒ \(AD=AH\) (tính chất đường trung trực)
- E đối xứng với H qua AC
⇒ AC là đường trung trực của DE ⇒ \(AH=AE\) (tính chất đường trung trực)
Vậy: \(AD=AE\) hay A là trung điểm của DE (đpcm)
==========
b/ - AB là trung trực của DH (cmt) ⇒ \(DB=HB\) (tính chất đường trung trực)
- AC là đường trung trực của DE (cmt) ⇒ \(HC=HE\) (tính chất đường trung trực)
Xét △ADB và △ADH có:
- \(AH=AD\left(cmt\right)\)
- \(AB\text{ }chung\)
- \(DB=HB\left(cmt\right)\)
⇒ △ADB=△AHB (c.c.c) ⇒ \(\hat{ADB}=\hat{AHB}=90\text{°}\left(1\right)\)
- Tương tự ta cũng có: △AHC=△AEC (c.c.c) ⇒ \(\hat{AHC}=\hat{AEC}=90\text{°}\left(2\right)\)
\(DE\perp DB;DE\perp CE\Rightarrow DB\text{//}CE\)
⇒ ABEC là hình thang
Từ (1) và (2): Vậy: ABEC là hình thang vuông (đpcm)
==========
c/ Xét △AHB và △ABC có:
- \(\hat{AHB}=\hat{BAC}=90\text{°}\)
- \(\hat{ABH}\text{ }chung\)
⇒ △HBA ∼ △ABC (g.g)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{HB}{AB}\Rightarrow AB=\sqrt{\left(2+8\right).2}=\sqrt{20}\left(cm\right)\)
Xét △AHB vuông tại H:
\(AB^2=AH^2+HB^2\left(Pytago\right)\)
\(\Rightarrow AH=\sqrt{\left(\sqrt{20}\right)^2-2^2}=4\left(cm\right)\)
- Mặt khác: \(AH=AD=AE=4\left(cm\right)\)
\(HB=DB=2\left(cm\right)\)
\(HC=CE=8\left(cm\right)\)
\(\Rightarrow P_{BDEC}=\left(4+4\right)+2+\left(2+8\right)+8=28\left(cm\right)\)
Vậy: \(AH=4cm\)
\(P_{BDEC}=28cm\)
A B C D E H I K
Gọi I là giao điểm của HD và AB
K là giao điểm của HE và AC.
a)
H đối xứng D qua AB = > AB là đường trung trực của HD
H đối xứng E qua AC = > AC là đường trung trực của HE
Xét tam giác ABD và tam giác ABH có:
AB chung
BD = BH (AB là đường trung trực của HD)
DA = HA (AB là đường trung trực của HD)
=> Tam giác ABD = Tam giác ABH (c.c.c)
=> BAD = BAH (2 góc tương ứng)
Xét tam giác ACE và tam giác ACH có:
AC chung
CE = CH (AC là đường trung trực của HE)
EA = HA (AC là đường trung trực của HE)
=> Tam giác ACE = Tam giác ACH (c.c.c)
=> CAE = CAH (2 góc tương ứng)
Ta có:
DAH + HAE = DAB + BAH + HAC + CAE = BAH + BAH + HAC + HAC = 900 + 900 = 1800
=> DAH và HAE kề bù
=> AD và AE là 2 tia đối
=> A, D, E thẳng hàng
b)
ADB = AHB (Tam giác ABD = Tam giác ABH)
mà AHB = 900
=> ADB = 900
=> AD _I_ DB (1)
AEC = AHC (Tam giác ACE = Tam giác ACH)
mà AHC = 900
=> AEC = 900
=> AE _I_ EC (2)
(1) và (2)
=> DB // EC
=> BDCE là hình thang
HIA = IAK = AKH = 900
=> AIHK là hcn
=> DHE = 1v
A B C D H E
Giải
a) Ta có: H và D đối xứng qua AB (gt)
=> AD = AB
=> \(\Delta\)ADH cân tại A
=> góc DAB = góc BAH
Tương tự chứng minh được
góc HAC = góc CAE
=> góc DAB + góc CAE = góc BAH + góc HAC = góc BAC = 1v
=> góc DAB + góc BAC + góc CAE = 2v
Hay góc DAE = 2V => D, A, E thẳng hàng
b) Dễ dàng chứng minh \(\Delta\)ABH = \(\Delta\)ABD
=> góc ADB = góc AHB = 1v => BD \(\perp\) DE
Tương tự góc AEC = góc AHC = 1v => CE \(\perp\)DE
=> BD // CE => BDEC là hình thang
Từ chứng minh trên => DH \(\perp\) AB
Mà AB // HE (cùng \(\perp\) AC) => DH \(\perp\) HE hay góc DHE = 1v