K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

a) Xét △AMC và △BMD có:

\(\left\{{}\begin{matrix}AM=MD\left(gt\right)\\\widehat{AMC}=\widehat{BMD}\left(\text{2 góc đối đỉnh}\right)\\MB=MC\left(\text{vì M là trung điểm của BC}\right)\end{matrix}\right.\)

\(\Rightarrow\) △AMC và △DMB (c.g.c)

\(\Rightarrow\left\{{}\begin{matrix}AC=BD\left(\text{2 cạnh tương ứng}\right)\\\widehat{CAM}=\widehat{BDM}\left(\text{2 góc tương ứng}\right)\end{matrix}\right.\)

Có: \(\widehat{CAM}=\widehat{BDM}\left(cmt\right)\)

Mà 2 góc ở vị trí so le trong

\(\Rightarrow\) AC // BD (dấu hiệu nhận biết)

b) Xét △AMB và △DMC có:

\(\left\{{}\begin{matrix}AM=MD\left(gt\right)\\\widehat{AMB}=\widehat{CMD}\left(\text{2 góc đối đỉnh}\right)\\MB=MC\left(\text{vì M là trung điểm của BC}\right)\end{matrix}\right.\)

\(\Rightarrow\text{△AMB = △DMC}\left(c.g.c\right)\)

\(\Rightarrow AB=CD\left(\text{2 cạnh tương ứng}\right)\)

Xét △ABC và △DBC có:

\(\left\{{}\begin{matrix}AB=DC\left(cmt\right)\\AC=BD\left(cmt\right)\\BC:\text{ cạnh chung}\end{matrix}\right.\)

\(\Rightarrow\text{△ABC = △DCB}\left(c.c.c\right)\)

\(\Rightarrow\widehat{BAC}=\widehat{BDC}\left(\text{2 góc tương ứng}\right)\)

\(\widehat{BAC}=90^o\Rightarrow\widehat{BDC}=90^o\)

22 tháng 11 2019

a) Xét 2 \(\Delta\) \(DBM\)\(ACM\) có:

\(BM=CM\) (vì M là trung điểm của \(BC\))

\(\widehat{DMB}=\widehat{AMC}\) (vì 2 góc đối đỉnh)

\(DM=AM\) (vì M là trung điểm của \(AD\))

=> \(\Delta DBM=\Delta ACM\left(c-g-c\right)\)

=> \(BD=AC\) (2 cạnh tương ứng).

=> \(\widehat{DBM}=\widehat{ACM}\) (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AC\) // \(BD.\)

Chúc bạn học tốt!

20 tháng 4 2020

Bạn tự vẽ hình nha!!!

a.)Xét\(\Delta ABD\)\(\Delta ABM\)có:

            \(AD=BM\)

            \(AB:\)Chung

           \(\widehat{DAB}=\widehat{ABM}\left(slt\right)\)

\(\Rightarrow\Delta ABD=\Delta BAM\)

b.)Ta có:\(\Delta ABD=\Delta BAM\)(Theo a)

    \(\Rightarrow\widehat{DBA}=\widehat{BAM}\)(mà 2 góc SLT)

\(\Rightarrow AM//BD\)

c.)Xét\(\Delta ADI\)\(\Delta IMC\)có:

    \(AD=CM\)

   \(\widehat{DAI}=\widehat{IMC}\)

    \(AI=IM\)

\(\Rightarrow\Delta AID=\Delta IMC\)

\(\Rightarrow IA=IC\)

\(\Rightarrow I\)là trung điểm của\(AC\)

\(\Rightarrow I,A,C\)thẳng hàng(đpcm)

P/s:#Study well#

1 tháng 8 2019

#)Giải :

a) Áp dụng định lí py - ta - go :

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=10^2-8^2=36\Rightarrow AC=\sqrt{36}=6\)

b) Dễ c/m \(\Delta ABC=\Delta ABD\left(c.g.c\right)\)

\(\Rightarrow BD=BC\) (cặp cạnh t/ứng = nhau)

\(\Rightarrow\Delta BDC\)  cân tại B

1 tháng 8 2019

A C B D E M

Giải: a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:

BC2 = AB2 + AC2 

=> AC2 = BC2 - AB2 = 102 - 82 = 100 - 64 = 36

=> AC = 6

b) Xét t/giác ABC và t/giác ABD

có: AB : chung

 \(\widehat{BAC}=\widehat{BAD}=90^0\) (gt)

 AC = AD (gt)

=> t/giác ABC = t/giác ABD (c.g.c)

=> BC = BD (2 cạnh t/ứng)

=> t/giác BDC cân tại B

c) Ta có: AM // BD => \(\widehat{D}=\widehat{MAC}\)(đồng vị)

                      mà \(\widehat{D}=\widehat{C}\)(vì t/giác ABC = t/giác ABD)

                    => \(\widehat{MAC}=\widehat{C}\) => t/giác MAC cân tại M => MA = MC (1)

AM // BD => \(\widehat{DBA}=\widehat{BAM}\)(so le trong)

     mà \(\widehat{DBA}=\widehat{ABM}\) (vì t/giác ABC = t/giác ABD)

=> \(\widehat{BAM}=\widehat{ABM}\) => t/giác ABM cân tại M => BM = AM (2)

Từ (1) và (2) => BM = CM

d) Xét t/giác AMB và t/giác EMC

có: AM = ME (gt)

\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)

 BM = CM (cmt)

=> t/giác AMB = t/giác EMC (c.g.c)

=> \(\widehat{BAM}=\widehat{MEC}\) (2 góc t/ứng)

Tương tự, xét t/giác BME và t/giác CMA 

=> t/giác BME = t/giác CMA (c.g.c)

=> \(\widehat{BEM}=\widehat{MAC}\) (2 góc t/ứng)

Ta có: \(\widehat{BAM}+\widehat{MAC}=90^0\) (phụ nhau)

=> \(\widehat{CEM}+\widehat{BEM}=90^0\)

=> \(\widehat{BEC}=90^0\)

25 tháng 12 2016

Lâu rồi k giải toán, giờ trở lại vs Toán thân iu

Ta có hình vẽ:

A B C D M I K

a/ Xét tam giác ABD và tam giác CMD có:

AD = DC (vì D là trung điểm AC)

góc ADB = góc CDM (đối đỉnh)

DB = DM (GT)

Vậy tam giác ABD = tam giác CMD (c.g.c)

=> AB = CM (2 cạnh tương ứng)

Ta có: tam giác ABD = tam giác CMD

=> góc BAC = góc MCA (2 góc tương ứng)

b/ Xét tam giác AMD và BCD có:

AD = DC (vì D là trung điểm AC)

góc ADM = góc BDC (đối đỉnh)

DM = DB (GT)

Vậy tam giác AMD = tam giác BCD (c.g.c)

=> góc MAD = góc DCB (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AM // BC (đpcm)

c/ Xét tam giác ABC và tam giác AMC có:

AC: cạnh chung

AB = CM (do tam giác ABD = tam giác CMD)

AM = BC (do tam giác AMD = tam giác BCD)

=> tam giác ABC = tam giác AMC (c.c.c)

d/ Ta có: AB = CM (câu a)

Mà I là trung điểm AB

và K là trung điểm CM

=> AI = IB = MK = KC

Xét tam giác IAD và tam giác KCD có:

AI = CK (đã chứng minh trên)

góc BAC = góc MCA (câu a)

AD = DC (vì D là trung điểm AC)

=> tam giác IAD = tam giác KCD (c.g.c)

=> góc IDA = góc KDC (2 góc tương ứng)

Ta có: \(\widehat{ADM}\)+\(\widehat{MDK}\)+\(\widehat{KDC}\)=1800

=> góc ADM + góc MDK + góc IDA = 1800

=> góc IDK = 1800

hay K,D,I thẳng hàng

2 tháng 9 2019

a) \(\Delta ABC\)cân tại A có \(\widehat{B}=\widehat{C}\)nên \(\widehat{A}=180^0-2.40^0=100^0\)

Vẽ \(DE//BC\left(E\in AB\right)\)

Trên tia BC lấy điểm F sao cho BD = BF.

Vì BD là phân giác của \(\widehat{B}\)nên \(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{B}}{2}=20^0\)

Vì \(DE//BC\)nên \(\widehat{EDB}=\widehat{DBC}\)(so le trong)

Mà \(\widehat{ABD}=\widehat{DBC}\)(Do BD là phân giác của \(\widehat{B}\))

Suy ra \(\widehat{EDB}=\widehat{ABD}\)\(\Rightarrow\Delta EBD\)tại E \(\Leftrightarrow EB=ED\)(1)

Vì \(DE//BC\)nên \(\hept{\begin{cases}\widehat{AED}=\widehat{B}\\\widehat{ADE}=\widehat{C}\end{cases}}\)(đồng vị)

Mà \(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A) nên \(\widehat{AED}=\widehat{ADE}\)

\(\Rightarrow\Delta AED\)cân tại A \(\Rightarrow AE=AD\)

Lại có AB = AC (gt) nên EB = DC (2)

Từ (1) và (2) suy ra ED = DC

BD = BF(theo cách vẽ) nên \(\Delta BDF\)cân tại B có \(\widehat{DBF}=20^0\)

\(\Rightarrow\widehat{BDF}=\widehat{BFD}=\frac{180^0-20^0}{2}=80^0\)

Mà \(\widehat{DFB}+\widehat{DFC}=180^0\)(kề bù) nên ​\(\widehat{DFC}=180^0-80^0=100^0\)

​Áp dụng định lý về tổng ba góc trong tam giác vào tam giác FDC, có:

       \(\widehat{FDC}=180^0-100^0-40^0=40^0\)

Xét \(\Delta AED\)và \(\Delta FDC\)​có:

      \(\widehat{ADE}=\widehat{FCD}\left(=40^0\right)\)

      ED = DC( cmt)

      \(\widehat{AED}=\widehat{FDC}\left(=40^0\right)\)

Suy ra \(\Delta AED=\Delta FDC\left(g-c-g\right)\)

\(\Rightarrow AD=FC\)(hai cạnh tương ứng)

Lúc đó: \(BD+AD=BF+FC=BC\left(đpcm\right)\)

b) Vẽ tam giác đều AMG trên nửa mặt phẳng bờ AB chứa điểm C

Ta có: \(\widehat{GAC}=\widehat{BAC}-\widehat{BAG}=100^0-60^0=40^0\)

2 tháng 9 2019

Cách khác theo cô Huyền:3

Câu hỏi của thu - Toán lớp 7 - Học toán với OnlineMath

11 tháng 3 2020

B D A C

Hình hơi xấu xíu :vv

a) Xét t.giác AMB và t.giác DMC có :

MA = MD ( gt )

\(\widehat{AMB}=\widehat{DMC}\left(doi-dinh\right)\)

MB = MC (gt)

Vậy t.giác AMB = t.giác DMC (c.g.c)

b) Do : t.giác AMB =  t.giác DMC ( cmt ) 

=> AB = DC ; \(\widehat{ABC}=\widehat{DCB}\)

Xét t.giác ABC và t.giác DCB có :

BC : cạnh chung

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

AB = DC ( cmt )

Vậy t.giác ABC = t.giác DCB ( c.g.c )

=> AC = BD

\(\widehat{ACB}=\widehat{DBC}\) mà hai góc này ở vị trí so le trong.

=> AC // BD

Vì : t.giác ABC = t.giác DCB ( cmt )

=> \(\widehat{BAC}=\widehat{BDC}=90^0\)