K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

cho toán lớp 10 ....Bố nó hiểu

15 tháng 5 2017

Áp dụng BĐT Côsi-Shaw ta có :

\(A=\dfrac{1}{\sqrt[3]{a+7b}}+\dfrac{1}{\sqrt[3]{b+7c}}+\dfrac{1}{\sqrt[3]{c+7a}}\ge\dfrac{9}{\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}}\)

Đặt \(B=\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\)

Ta sẽ có : \(\dfrac{9}{B}\)

Mà : \(\dfrac{9}{B}\) đạt GTNN khi B lớn nhất .

Áp dụng BĐT Cô si , ta có :

\(\sqrt[3]{\left(a+7b\right).8.8}\le\dfrac{a+7b+8+8}{3}\) ( 1 )

Tương tự , ta có :

\(\sqrt[3]{\left(b+7c\right).8.8}\le\dfrac{b+7c+8+8}{3}\left(2\right)\)

\(\sqrt[3]{\left(c+7a\right).8.8}\le\dfrac{c+7a+8+8}{3}\) \(\left(3\right)\)

Cộng từng vế của \(\left(1\right),\left(2\right),\left(3\right)\) ta có :

\(4.\left(\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\right)\le\dfrac{8}{3}\left(a+b+c\right)+16\)

\(\Leftrightarrow4B\le24\)

\(\Leftrightarrow B\le6\)

Vậy \(Max_B=6\) \(\Leftrightarrow Min_A=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=1.\)

Sai thôi nha leuleu

16 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow A\ge3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}\le\dfrac{8\left(a+b+c\right)}{3}=8\)

\(\Rightarrow\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}\ge\dfrac{1}{8}\)

\(\Rightarrow3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\ge3\sqrt[3]{\dfrac{1}{8}}=\dfrac{3}{2}\) (2)

Từ (1) và (2)

\(\Rightarrow A\ge\dfrac{3}{2}\)

\(\Rightarrow A_{min}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

mọi người giúp giải mấy bài sau với ạ ! cám ơn trước. 1. Cho hàm số \(y=x^2-\left(m+2\right)x+m-3\) ( m là tham số). Tìm m để đồ thị của h/s đã cho cắt trục hoành tại 2 điểm pb có hoành độ \(x_1,x_2\) thỏa \(\dfrac{x_1-m-1}{x_2}+\dfrac{x_2-m-1}{x_1}=-26\) 2. Cho parabol (P): \(y=x^2\), trên (P) lấy 2 điểm \(A_1,A_2\) sao cho góc A1OA2 = 90 độ ( O là gốc tọa độ). Hình chiếu vuông góc của A1,A2 lên trục hoành...
Đọc tiếp

mọi người giúp giải mấy bài sau với ạ !
cám ơn trước.

1. Cho hàm số \(y=x^2-\left(m+2\right)x+m-3\) ( m là tham số). Tìm m để đồ thị của h/s đã cho cắt trục hoành tại 2 điểm pb có hoành độ \(x_1,x_2\) thỏa \(\dfrac{x_1-m-1}{x_2}+\dfrac{x_2-m-1}{x_1}=-26\)

2. Cho parabol (P): \(y=x^2\), trên (P) lấy 2 điểm \(A_1,A_2\) sao cho góc A1OA2 = 90 độ ( O là gốc tọa độ). Hình chiếu vuông góc của A1,A2 lên trục hoành lần lượt là B1,B2. Chứng minh: OB1.OB2=1

3. Cho parabol (P) có pt y=x2-3x+1 và đường thẳng d: y=(2m+1)x+2 và điểm M(3;3). Tìm m để d cắt (P) tại 2 điểm pb A, B sao cho tam giác MAB vuông cân tại M.

4. Cho hàm số f(x) = ax2+bx+c, biết rằng đồ thị hàm số f(x) cắt trục hoành tại 2 điểm pb thuộc đoàn [0;1]. Tìm giá trị lớ nhất và nhỏ nhất của biểu thức \(M=\dfrac{\left(a-b\right)\left(2a-c\right)}{a\left(a-b+c\right)}\)

5. Cho hàm số bậc hai f(x) = ax2+bx+c (a khác 0).C/m : nếu f(x) \(\ge\) 0 với mọi x \(\in\)R thì 4a + c \(\ge\) 2b

0