Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔCMD có
CH là đường cao
CH là đường trung tuyến
Do đo;ΔCMD cân tại C
mà CA là đườg cao
nên CA là phân giác của góc MCD
a) Xét tgiac ABM và tgiac ACM có:
AB = AC (gt)
góc ABM = góc ACM (gt)
MB = MC (gt)
suy ra: tgiac ABM = tgiac ACM (c.g.c)
b) tgiac ABM = tgiac ACM
=> góc AMB = góc AMC
mà góc AMB + góc AMC = 1800
=> góc AMB = góc AMC = 900
hay AM vuông góc với BC
c) Xét tgiac MBK và tgiac MCA có
MB = MC (gt)
góc BMK = góc CMA (dd)
MK = MA (gt)
suy ra: tgiac MBK = tgiac MCA (c.g.c)
=> góc MBK = góc MCA
mà 2 góc này so le trong
=> BK // MC
A B C M K
CM : Xét tam giác ABM và tam giác ACM
có AB = AC (gt)
BM = CM (gt)
AM : chung
=> tam giác ABM = tam giác ACM (c.c.c)
b) Ta có : Tam giác ABM = tam giác ACM (cmt)
=> góc BMA = góc AMC (hai góc tương ứng)
Mà góc BMA + góc AMC = 1800 ( kề bù )
hay 2\(\widehat{BMA}\)= 1800
=> góc BMA = 1800 : 2
=> góc BMA = 900
c) Xét tam giác AMK và tam giác CMA
có MK = MA (gt)
góc BMK = góc AMC ( đối đỉnh)
BM = CM (gt)
=> tam giác AMK = tam giác CMA (c.g.c)
=> góc KBM = góc MCA (hai góc tương ứng)
Mà góc KBM và góc MCA ở vị trí so le trong
=> Bk // AC
B C A M H D E
a) Xét tam giác ABM và ACM có:
AB = AC (gt)
BM = CM (gt)
Cạnh AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\)
b) Ta thấy tam giác MCD có HC là đường cao đồng thời trung tuyến nên ACD là tam giác cân tại C.
Vậy thì CH hay Ca là phân giác góc \(\widehat{MCD}\)
c) Xét tam giác AMC và ADC có:
CM = CD
AC chung
\(\widehat{MCA}=\widehat{DCA}\)
\(\Rightarrow\Delta AMC=\Delta ADC\left(c-g-c\right)\)
\(\Rightarrow\widehat{ADC}=\widehat{AMC}=90^o\) hay \(AD\perp CD\)
Lại có HE // AD nên \(HE\perp CD\)
Hình thì chú tự vẽ nhá
d) Xét tam giác AEF có AE = AF ( chứng minh phần c ) nên tam giác AEF cân tại A
Nên \(\widehat{AEF}=\widehat{AFE}=\frac{180^o-\widehat{EAF}}{2}\)
Xét \(\Delta BNE\)và \(\Delta CIF\)có :
\(\widehat{BNE}=\widehat{CIF}=90^o;BE=CF;\widehat{AEF}=\widehat{AFE}\)
Khi đó \(\Delta BNE=\Delta CIF\)( cạnh huyền góc nhọn )
Nên \(NE=IF\)(hai cạnh tương ứng )
Ta có \(AN+NE=AE;AI+IF=AF\)mà \(AE=AF;NE=IF\)nên \(AN=AI\)
Xét tam giác ANI có AN = AI nên tam giác ANI cân tại A nên \(\widehat{ANI}=\widehat{AIN}=\frac{180^o-\widehat{NAI}}{2}\)
Khi đó \(\widehat{ANI}=\widehat{AEF}=\frac{180^o-\widehat{EAF}}{2}\)mà hai góc này nằm ở vị trí đồng vị của NI và EF cắt bởi AE nên theo dấu hiệu nhận biết hai đường thẳng song song ta có \(NI//EF\)
Vậy....
A E F B C M N I
a) Xét ha tam giác ABM và ACM có:
\(\hept{\begin{cases}BM=MC\left(gt\right)\\AM:chung\\AB=AC\left(gt\right)\end{cases}\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)}\)
b) Ta có: AB = AC => tam giác ABC cân tại A
Tam giác cân ABC có AM là đường trung tuyến
Nên cũng đồng thời là đường cao
Suy ra: AM vuông góc với BC
c) Ta có: Tam giác ABC cân tại A => \(\widehat{ABM}=\widehat{ACM}\)
Mà \(\widehat{ABM}+\widehat{ABE}=180^0\)
\(\widehat{ACM}+\widehat{ACF}=180^0\)
Suy ra: \(\widehat{ABE}=\widehat{ACF}\)
Xét hai tam giác ABE và ACF có:
\(\hept{\begin{cases}BE=CF\\\widehat{ABE}=\widehat{ACF}\\AB=AC\end{cases}\Rightarrow\Delta ABE}=\Delta ACF\left(c-g-c\right)\)
d) Ta có: AE = AF (cmt)
=> Tam giác AEF cân tại A
Suy ra: \(\widehat{AFE}=\widehat{AEF}=\frac{180^0-\widehat{EAF}}{2}\) (1)
Xét hai tam giác vuông BNE và CIF: \(\hept{\begin{cases}BE=CF\\\widehat{E}=\widehat{F}\end{cases}\Rightarrow\Delta BNE=\Delta CIF}\) (cạnh huyền -góc nhọn)
=> NE = IF
Ta có: AE = AF (Gt); NE = IF (cmt)
=> AE - NE = AF - IF
=> AN = AI
=> Tam giác ANI cân tại I
Suy ra: \(\widehat{ANI}=\widehat{AIN}=\frac{180^0-\widehat{EAF}}{2}\) (2)
Từ (1) và (2) suy ra: \(\widehat{AIN}=\widehat{AFE}\)
Mà hai góc này ở vị trí đồng vị
Nên NI // EF
a b c m d 1 2 3 4 e f
Xét T/G ABC và DCM
CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)
Có T/G ABC=DCM -> Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC
C) Xét T/G BFM và CEM có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) -> BFM=CEM(g.c.g)
-> ME=MF -> M là trung điểm EF
A B C M D E F
a, Xét t/g ABM và t/g DCM có:
AM=DM(gt)
BM=CM(gt)
góc AMB=góc DMC (đối đỉnh)
=>t/g ABM=t/g DCM (c.g.c)
b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)
Mà 2 góc này là cặp góc so le trong
=> AB//DC
c, Xét t/g BEM và t/g CFM có:
góc BEM = góc CFM = 90 độ (gt)
BM=CN(gt)
góc BME = góc CMF (đối đỉnh)
=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
=>EM=FM (2 cạnh t/ứ)
=>M là trung điểm của EF
Xét \(\Delta ABC\) có:
c) Ta có \(\Delta ABC\) cân tại \(A\left(cmt\right).\)
=> \(\widehat{B}=\widehat{C}\) (tính chất tam giác cân).
Xét 2 \(\Delta\) vuông \(HBM\) và \(KCM\) có:
\(\widehat{MHB}=\widehat{MKC}=90^0\left(gt\right)\)
\(BM=CM\) (như ở trên)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
=> \(\Delta HBM=\Delta KCM\) (cạnh huyền - góc nhọn).
=> \(HM=KM\) (2 cạnh tương ứng).
Chúc bạn học tốt!