\(\Delta\) ABC cân ở A có góc A < 90 độ. Vẽ BD \(\perp\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2019

Hình bạn tự vẽ nha!

a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)

=> \(AB=AC.\)

Xét 2 \(\Delta\) vuông \(ABD\)\(ACE\) có:

\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)

\(AB=AC\left(cmt\right)\)

\(\widehat{A}\) chung

=> \(\Delta ABD=\Delta ACE\) (cạnh góc vuông - góc nhọn kề)

=> \(AD=AE\) (2 cạnh tương ứng).

b) Theo câu a) ta có \(\Delta ABD=\Delta ACE.\)

=> \(\widehat{ABD}=\widehat{ACE}\) (2 góc tương ứng).

Hay \(\widehat{ABI}=\widehat{ACI}.\)

Xét 2 \(\Delta\) \(ABI\)\(ACI\) có:

\(AB=AC\left(cmt\right)\)

\(\widehat{ABI}=\widehat{ACI}\left(cmt\right)\)

Cạnh AI chung

=> \(\Delta ABI=\Delta ACI\left(c-g-c\right)\)

=> \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).

=> \(AI\) là tia phân giác của \(\widehat{BAC}\left(1\right).\)

Câu c) mình đang nghĩ nhưng câu d) thì mình làm được.

d) Xét 2 \(\Delta\) \(ABM\)\(ACM\) có:

\(AB=AC\left(cmt\right)\)

\(BM=CM\) (vì M là trung điểm của \(BC\))

Cạnh AM chung

=> \(\Delta ABM=\Delta ACM\left(c-c-c\right)\)

=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng).

=> \(AM\) là tia phân giác của \(\widehat{BAC}\left(2\right).\)

Từ \(\left(1\right)và\left(2\right)\Rightarrow AI,AM\) đều là các tia phân giác của \(\widehat{BAC}.\)

=> 3 điểm \(A,I,M\) thẳng hàng (đpcm).

Chúc bạn học tốt!

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

16 tháng 1 2019

a,Xét ABM và ACM

AB=AC , AM chung , BM=MC(Do M là trung điểm của BC)

ABM = ACM

BAM = CAM                                                               (1)

Mà AM nằm giữa AB và AC ( Do M nằm giữa B và C) (2)

Từ (1) và (2)

AM là tia phân giác của BAC

16 tháng 1 2019

b,Xét BNC và DNC

NC chung , CB = CD 

Góc BCN = DCN

Tam giác:BNC = DNC

Góc BNC = DCN 

Mà BNC + DCN = 180

BNC = 90

CN vuông góc với BD