Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai ! b) CM : FI \(\perp\)DE
Trên mạng có lời giải nhé ! câu lên đó tham khảo
nếu k tìm thấy, ib mik, mik sẽ đưa link
B/ ĐỀ SAI. chứng minh FI vuông góc với DE
D E F I M K
Xét tam giác EMK và tam giác FMI
có ME=MF (GT)
góc EMK = góc FMI (đối đỉnh)
MI=MK (GT)
suy ra tam giác EMK = tam giác FMI (c.g.c) (1)
b) Từ (1) suy ra góc IFE = góc KEM (2 góc tương ứng) (2)
mà góc IFE ở vị trí so le trong với góc KEM (3)
Từ(2) và (3) suy ra EK // FI (4)
mà EK \(\perp\)DE (GT) (5)
Từ (4) và (5) suy ra FI \(\perp\)DE
Ta có hình vẽ:
B A C E F K D
a/ Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
hay 900 + góc B + 400 = 1800
=> góc ABC = 500
Ta có: \(\widehat{ABD}\)=\(\widehat{DBC}\)=\(\frac{1}{2}\widehat{ABC}\)= \(\frac{1}{2}\)500 = 250
Vậy góc ABD = 250
b/ Xét tam giác ABD và tam giác EBD có:
\(\widehat{ABD}=\widehat{DBE}\) (GT)
BD: chung
AB = EB (GT)
Vậy tam giác ABD = tam giác EBD (c.g.c)
Ta có: tam giác ABD = tam giác EBD
=> \(\widehat{A}=\widehat{E}=90^0\) hay DE \(\perp\)BC (đpcm)
c/ Xét tam giác ABC và tam giác EBF có:
\(\widehat{B}\): góc chung
BA = BE (GT)
góc A = góc E = 900 (đã chứng minh trên)
=> tam giác ABC = tam giác EBF
(trường hợp cạnh huyền góc nhọn)
d/ Xét tam giác BFK và tam giác BCK có:
BK: cạnh chung
\(\widehat{FBK}=\widehat{CBK}\) (GT)
BF = BC (tam giác ABC = tam giác EBF)
=> tam giác BFK = tam giác BCK (c.g.c)
=> \(\widehat{BKF}\)=\(\widehat{BKC}\) (2 góc tương ứng)
Mà góc BKC = 900 (do CK\(\perp\)BD) => góc BKF = 900
Ta có: \(\widehat{FKC}=\widehat{BKF}+\widehat{BKC}=90^0+90^0=180^0\)
hay K,F,C thẳng hàng
d) ta có tam giác ABC = tam giác EBF ( theo c)
=> BC = BF ( 2 cạnh tương ứng)
Xét tam giác BKC và tam giác BKF có:
BC = BF ( gt )
BK chung
KBK = FBC ( gt)
=> tam giác BKC = tam giác BKF ( c.g.c )
=> BKC = BKF ( 2 góc tương ứng)
=> BKC + BKF = 180°( 2 góc kề bù)
=> BKC = BKF = 180° : 2 = 90° = FKC
vậy 3 điểm F,K,C thẳng hàng
A B C H K a,\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có :
AB=AC (gt)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra: \(\Delta ABM\) = \(\Delta ACM\)(c.g.c)
b,Xét \(\Delta\)HMB và \(\Delta\)KMC có:
\(\widehat{H}=\widehat{K}\left(=90^o\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra : \(\Delta\)HMB = \(\Delta\)KMC(ch-gn)
=>BH = CK (2 cạnh tương ứng)
a: Xét ΔMHE vuông tại H và ΔMKF vuông tại K có
ME=MF
\(\widehat{E}=\widehat{MFK}\)
Do đó: ΔMHE=ΔMKF
Suy ra: MH=MK
b: Xét ΔDHM vuông tại H và ΔDKM vuông tại K có
DM chung
MH=MK
Do đó: ΔDHM=ΔDKM
Suy ra: DH=DK
c: Xét ΔIFE có
M là trung điểm của EF
MH//IF
Do đó: H là trung điểm của EI
Xét ΔIFE có
M là trung điểm của FE
H là trung điểm của EI
Do đó: MH là đường trung bình
=>MH=1/2FI