\(\Delta ABC\)vuông tại A. Trên tia BC lấy điểm D sao cho BD=BA. Tia phân giác B cắt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

Đề bài kiểu gì thế? Lê Thanh Thúy

27 tháng 12 2019

a) Xét 2 \(\Delta\) \(ABI\)\(DBI\) có:

\(AB=DB\left(gt\right)\)

\(\widehat{ABI}=\widehat{DBI}\) (vì \(BI\) là tia phân giác của \(\widehat{B}\))

Cạnh BI chung

=> \(\Delta ABI=\Delta DBI\left(c-g-c\right)\)

=> \(IA=ID\) (2 cạnh tương ứng).

b) Xem lại đề.

c) Theo câu a) ta có \(\Delta ABI=\Delta DBI.\)

=> \(\widehat{BAI}=\widehat{BDI}\) (2 góc tương ứng).

\(\widehat{BAI}=90^0\left(gt\right)\)

=> \(\widehat{BAI}=\widehat{BDI}=90^0.\)

Xét 2 \(\Delta\) vuông \(IAE\)\(IDC\) có:

\(\widehat{EAI}=\widehat{CDI}=90^0\)

\(IA=ID\left(cmt\right)\)

\(\widehat{AIE}=\widehat{DIC}\) (vì 2 góc đối đỉnh)

=> \(\Delta IAE=\Delta IDC\) (cạnh góc vuông - góc nhọn kề).

b) Vì \(BI\) là tia phân giác của \(\widehat{B}\left(gt\right)\)

=> \(BH\) là tia phân giác của \(\widehat{B}.\)

Theo câu c) ta có \(\Delta IAE=\Delta IDC.\)

=> \(AE=DC\) (2 cạnh tương ứng).

Ta có:

\(\left\{{}\begin{matrix}BA+AE=BE\\BD+DC=BC\end{matrix}\right.\)

\(\left\{{}\begin{matrix}BA=BD\left(gt\right)\\AE=DC\left(cmt\right)\end{matrix}\right.\)

=> \(BE=BC.\)

=> \(\Delta EBC\) cân tại B.

\(BH\) là đường phân giác (cmt).

=> \(BH\) đồng thời là đường cao của \(\Delta EBC.\)

=> \(BH\perp CE\left(đpcm\right).\)

Chúc bạn học tốt!

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

a: Xét ΔABI và ΔDCI có

IA=ID

\(\widehat{AIB}=\widehat{DIC}\)

IB=IC

Do đó: ΔABI=ΔDCI

Suy ra: \(\widehat{ABI}=\widehat{DCI}\)

mà hai góc này ở vị trí so le trong

nên AB//CD

b: Ta có: AB//CD

mà AB\(\perp\)AC

nên CD\(\perp\)AC

c: Xét tứ giác ABDC có

I là trung điểm của AD

I là trung điểm của BC

Do đó: ABDC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: BC=AD

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
22 tháng 12 2017

A B C D I

7 tháng 8 2019

Câu hỏi của Vy Hà Khánh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

11 tháng 1 2019

a) xét am giác BDA và tam giác BDE, có:

BE = BA (gt)

góc EBD = góc DBA (BD là tia phân giác của góc B)

BD : cạnh chung

\(\Rightarrow\)tam giác BDA = tam giác BDE (c.g.c)

\(\Rightarrow\)góc E = góc A = 90o(2 goc tương ứng)

\(\Rightarrow\)DE\(\perp\) BE

b)xét tam giác ADF và tam giác EDC,có:

góc DAF = góc CED (= 90o)

DE = DA (2 cạnh tương ứng)

góc CDE = góc FDA ( đối đỉnh)

\(\Rightarrow\)ta giác ADF = tam giác EDC (g.c.g)

còn BH \(//\) EK mk ko bt lm

mk chỉ kẻ đc vậy thôi bn tự kẻ tiếp nhé! A B C D E F

26 tháng 12 2018

a) . Xét\(\Delta ABE\) và  \(\Delta ADE\) có:

     BA = DA (gt)

     Góc BAE = góc DAE ( gt)

    AE cạnh chung

nên \(\Delta ADE\) =   \(\Delta ABE\)( c-g-c)

b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)\(^{180^o}\)

    Suy ra : \(\widehat{AIB}\)  = \(180^o\)\(\widehat{ABI}-\widehat{BAI}\)

               \(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)

    Suy ra: \(\widehat{AID}\)\(180^O\) -     \(\widehat{ADI}\)-\(\widehat{IAD}\)

   Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)

         \(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)

   \(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)

Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )

MÀ  \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )

NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)

HAY   \(AE\perp BD\)