Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E H I
XÉT \(\Delta BDC\)VÀ \(\Delta CEB\)
^E=^D=\(90^0\)
BC chung =>\(\Delta BDC=\Delta CEB\left(ch-gn\right)\)
^BCB=^EBC
=> ^DBC=^ECB mà ^ABC=^ACB nên ^IBE=^ICD
ta lại có EB=DC mà AB=AC nên AD=AE
Xét \(\Delta AEI\)VÀ \(\Delta ADI\)
AE=AD
^E=^D=\(90^0\) =>\(\Delta AEI=\Delta ADI\left(ch-cgv\right)\)
AI chung =>^EAI=^DAI
XÉT \(\Delta ABH\)VÀ\(\Delta ACH\)
AB=AC
AH chung =>\(\Delta ABH=\Delta ACH\left(c-g-c\right)\)
^EAI=^DAI =>^AHB=^AHC
MÀ ^AHB + ^AHC=\(180^0\)NÊN ^AHB=^AHC=\(90^0\)
VẬY \(AH\perp BC=\left\{H\right\}\)
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
Mà \(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).
=> \(\widehat{ABC}=\widehat{ECK}.\)
Hay \(\widehat{DBH}=\widehat{ECK}.\)
Xét 2 \(\Delta\) vuông \(DBH\) và \(ECK\) có:
\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)
\(DB=EC\left(gt\right)\)
\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)
=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).
=> \(DH=EK\) (2 cạnh tương ứng).
c) Xét 2 \(\Delta\) vuông \(DHI\) và \(EKI\) có:
\(\widehat{DHI}=\widehat{EKI}=90^0\)
\(DH=EK\left(cmt\right)\)
\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)
=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).
=> \(DI=EI\) (2 cạnh tương ứng).
=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 1:
a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng
Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)
Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)
⇒AB=AF(hai cạnh tương ứng)
b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé
Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)
nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)
c)
Xét ΔABC có AB<AC(gt)
mà góc đối diện với cạnh AB là góc C
và góc đối diện với cạnh AC là góc B
nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{ABC}>\widehat{C}\)(đpcm)
Sửa đề: Tia phân giác góc B cắt AC tại D. Tia phân giác góc C cắt AB tại E
a: Xét ΔABD và ΔACE có
góc ABD=góc ACE
AB=AC
góc A chung
Do đó: ΔABD=ΔACE
=>BD=CE
b: Xét ΔOEB và ΔODC có
góc EBO=góc DCO
EB=DC
góc OEB=góc ODC
DO đó: ΔEOB=ΔDOC
c: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
DO đó: ΔABO=ΔACO
=>góc BAO=góc CAO
=>AO là phân giác của tia phân giác của góc BAC
Hình bạn tự vẽ nha!
Ta có:
AH_|_BC(AH là đường cao tam giác ABC)
DK_|_BC(DK là đường trung trực của BC)
=>AH//DK(t/c đường thẳng song song)
=>góc AED=góc EDK(so le trong) (1)
=>góc BEH=góc EDK( 2 góc đồng vị) (2)
Từ (1),(2) suy ra:
góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)
Mặt khác:
Xét tam giác BKD và tam giác DKC,có:
DK cạnh chung
BK=KC( K là trung điểm của BC)
góc BKD=góc DKC=1 vuông
=> tam giác BKD=tam giác DKC(c.g.c)
=>BD=DC
=>tam giác BDC cân tại D
Nên góc BDK=góc CDK(t/c tam giác cân) (3)
Lại do: AH//DK
=>góc CDK=góc DAH( 2 góc đồng vị) (4)
Từ (3),(4)=>góc BDK=góc DAH
Mà góc AED=góc BDK( so le trong)
E là giao điểm của BD và AH(gt)
Nên E nằm giữa BD và AH
=>góc DAE=góc DAH=góc AED
=>tam giác ADE cân tại D ( đpcm)
Hình:
A E C B H D K
Giải:
a) Xét tam giác ABD và tam giác ACE, có:
\(\widehat{A}\) chung
\(\widehat{ADB}=\widehat{AEC}=90^0\)
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\)
\(\Rightarrow BD=CE\) (Hai cạnh tương ứng)
b) Vì \(\Delta ABD=\Delta ACE\) (câu a)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) (Hai góc tương ứng)
Có: \(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)
Lấy vế trừ vế, ta được:
\(\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\)
\(\Leftrightarrow\widehat{HBC}=\widehat{HCB}\)
\(\Leftrightarrow\Delta BHC\) cân tại H
c) Xét tam giác ABC, có:
BD là đường cao thứ nhất của tam giác ABC
CE là đường cao thứ hai của tam giác ABC
Mà BD và CE cắt nhau ở H
Suy ra H là trực tâm của tam giác ABC
\(\Rightarrow\) AH là đường cao thứ ba của tam giác ABC
Mà tam giác ABC cân tại A
=> AH đồng thời là đường trung trực của tam giác ABC
=> AH là đường trung trực của BC
d) Xét tam giác BKC, có:
CD là đường cao đồng thời là đường trung tuyến của tam giác BKC
=> Tam giác BKC cân tại C
\(\Leftrightarrow\widehat{CBK}=\widehat{BKC}\)
Hay \(\widehat{CBH}=\widehat{DKC}\) (1)
Lại có: \(\widehat{CBH}=\widehat{HCB}\) (Tam giác HBC cân tại H)
Hay \(\widehat{CBH}=\widehat{ECB}\) (2)
Từ (1) và (2) => \(\widehat{ECB}=\widehat{DKC}\)
Vậy ...
a) xét \(\Delta EBC\) và \(\Delta\)DCB
\(\widehat{BEC}\) =\(\widehat{CDB}\) =90o
BC chung
\(\widehat{EBC}\) = \(\widehat{DCB}\) ( \(\Delta\) ABC cân tại A)
=>\(\Delta\) vuông EBC = \(\Delta\)vuông DCB ( cạnh huyền -góc nhọn )
=> BD=CE ( 2 cạnh tương ứng)
b) \(\Delta EBC=\Delta DCB\left(cmt\right)\)
=> \(\widehat{ECB}=\widehat{DBC}\) ( 2 góc tương ứng )
\(\Delta HBC\) có \(\widehat{HBC}=\widehat{HCB}\) ( cmt)
=> \(\Delta HBC\) cân tại H
c) H là giao điểm của 2 đường cao BD và CE
=> H là trực tâm của \(\Delta ABC\)
=> AH là đường cao của BC
và \(\Delta ABC\) cân tại A
=> AH là trung trực của BC ( Tính chất tam giác cân )
d) D là trung điểm của BK
=> BD=KD mà BD=CE (cmt)
=> CE=KD
XÉT \(\Delta KDC\) và \(\Delta CEB\)
KD=CE( cmt)
\(\widehat{CEB}\) =\(\widehat{KDC}\) \(=90^o\)
BE=CD( \(\Delta EBC=\Delta DCB\) )
=>\(\Delta KDC=\Delta CEB\left(c.g.c\right)\)
=>\(\widehat{ECB}=\widehat{DKC}\) ( 2 góc tương ứng )
hình bạn tự vẽ nha
a) \(\Delta ABC\) có \(\stackrel\frown{B}=\stackrel\frown{C}\) \(\Rightarrow\Delta ABC\)cân tại \(\stackrel\frown{A}\)(1)
vì BD là tia phân giác của \(\stackrel\frown{B}\)\(\Rightarrow\stackrel\frown{ABD=}\)\(\stackrel\frown{CBD}\)(2)
vì ce là phân giác của \(\stackrel\frown{C}\Rightarrow\stackrel\frown{ECB=\stackrel\frown{ECA}}\)(3)
từ (1),(2),(3) \(\Rightarrow\stackrel\frown{CBD}=\stackrel\frown{DBA}=\stackrel\frown{BCE}=\stackrel\frown{ECA}\)
xét tam giác BCD và tam giác CBE có:
\(\stackrel\frown{CBD}=\stackrel\frown{BCE}\)
\(\stackrel\frown{B}=\stackrel\frown{C}\)
BC chung
\(\Rightarrow\)\(\Delta BCD=\Delta CBE\left(ch-gn\right)\)
b) \(\Delta BOC\)có \(\stackrel\frown{OBC}=\stackrel\frown{OCB}\)\(\Rightarrow\Delta BOC\)cân tại O \(\Rightarrow OB=OC\)
c) xét \(\Delta AOB\)và \(\Delta AOC\)có
AO chung
AB=AC
\(\stackrel\frown{ABO}=\stackrel\frown{ACO}\)
\(\Rightarrow\Delta AOB=\Delta AOC\left(ch-gn\right)\)
\(\Rightarrow\stackrel\frown{BAO}=\stackrel\frown{CAO}\Rightarrow\stackrel\frown{OAD}=\stackrel\frown{OAK}\)
vì \(OH\perp AC\Rightarrow\stackrel\frown{OHA}=90^o\)
\(OK\perp AB\Rightarrow\stackrel\frown{OKA}=90^o\)
Xét \(\Delta OAK\)và \(\Delta OAH\)có:
\(\stackrel\frown{OKA}=\stackrel\frown{OHA}=90^o\)
\(\stackrel\frown{OAK}=\stackrel\frown{OAH}\)
OA chung
\(\Rightarrow\Delta OAK=\Delta OAH\left(ch-gn\right)\)
\(\Rightarrow OH=OK\)
nếu sai ở đâu mong bạn bỏ qua cho nha
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp