Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B E D K 1 2 a) * Xét ΔACE vuông tại C và ΔAKE vuông tại K có:
AE là cạnh huyền chung
\(\widehat{A_1}=\widehat{A_2}\) (vì AE là phân giác của \(\widehat{A}\) )
Vậy: ΔACE =Δ AKE (cạnh huyền-góc nhọn)
⇒ *AC =AK (2 cạnh tương ứng)
→ A ∈ đường trung trực của CK
* CE = KE (2 cạnh tương ứng)
→ E ∈ đường trung trực của CK
Vậy AE là đường trung trực của CK
=> AE⊥CK
b) Ta có: \(\widehat{A_1}=\widehat{A_2}=\dfrac{\widehat{A}}{2}=\dfrac{60^0}{2}=30^0\) (1)
Lại có: ΔABC vuông tại A có \(\widehat{A}=60^0\Rightarrow\widehat{ABC}=30^0\) (2)
Từ (1) và (2) => \(\widehat{A_2}=\widehat{ABC}\)
⇒Δ ABE cân tại E
mà EK ⊥AB => EK là đường cao của Δ ABE
=> EK cũng là đường trung tuyến của ΔABE
=> KA = KB
c) * ΔACE có: AE là cạnh huyền nên AE > AC
mà AE = EB ( vì ΔABE cân tại E)
nên: EB > AC
d) * ΔAEB có:
KE ⊥ AB => KE là đường cao của ΔAEB
AE ⊥ BD => BD là đường cao của ΔAEB
AC ⊥ EB => AC là đường cao của ΔAEB
Vậy: KE, BD, AC là 3 đường cao của ΔAEB
Do đó: KE, BD, AC cùng đi qua một điểm
(Câu d mình ko chắc lắm!!)
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
Do đó: ΔACE=ΔAKE
Suy ra: AC=AK và EC=EK
=>AE là đường trung trực của CK
b: Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
c: Ta có: EB=EA
mà EA>AC
nên EB>AC
Xét tam giác vuông ACE và tam giác vuông AKE có :
góc ECA = góc EKA = 90 độ
EA: cạnh huyền chung
góc CAE = góc KAE (vì AE là tia phân giác góc A)
Suy ra : Tam giác ACE= Tam giác AKE ( CH-GN)
=> AC=AK( hai cạnh tương ứng)
ta có: AC=AK (cmt)
=> A nằm trên đường trung trực của KC (1)
AK=EC( tam giác AKE=tam giác ACE)
=> E nằm trên đường trung trực của KC (2)
từ (1) và (2) suy ra AE là đường trung trực của KC
vậy AE vuông góc với CK
b) Ta có : trong tam giác vuông BCA: góc B + góc A = 90 độ
=> góc B = 90 độ - góc A= 90 độ - 60 độ = 30 độ
Mà góc EAB = 30 độ
Suy ra Tam giác EBA cân tại E
Mặt khác : EK vuông góc với AB
Nên EK cũng là đường trung trực của tam giác AEB
=>BK=AK
A B C E K
Xét tam giác vuông ACE và tam giác vuông AKE có :
góc ECA = góc EKA = 90 độ
EA: cạnh huyền chung
góc CAE = góc KAE (vì AE là tia phân giác góc A)
Suy ra : Tam giác ACE= Tam giác AKE ( CH-GN)
=> AC=AK( hai cạnh tương ứng)
ta có: AC=AK (cmt)
=> A nằm trên đường trung trực của KC (1)
AK=EC( tam giác AKE=tam giác ACE)
=> E nằm trên đường trung trực của KC (2)
từ (1) và (2) suy ra AE là đường trung trực của KC
vậy AE vuông góc với CK
b) Ta có : trong tam giác vuông BCA: góc B + góc A = 90 độ
=> góc B = 90 độ - góc A= 90 độ - 60 độ = 30 độ
Mà góc EAB = 30 độ
Suy ra Tam giác EBA cân tại E
Mặt khác : EK vuông góc với AB
Nên EK cũng là đường trung trực của tam giác AEB
=>BK=AK
Câu a bạn Quỳnh Như giải sai rồ
Xét tg ACE vuông tại c và tg AKE vuông tại K,ta có:
AE là cạnh chung
góc CAE = góc KAE ( AE là tia phân giác)
Vậy tam giác ACE = tg AKE ( trường hợp cạnh huyền góc nhọn trong tg vuông)
=> AC=AK
tớ làm câu c nhé
vì ACE=90 độ
suy ra AE>AC(1)
vì KA=KB(câu b)
ma EKvuong góc AB
suy ra tam giac AEB cân tai E
suy ra EA=EB(2)
Từ (1) va (2)
suy ra EB>AC
a) cm tam giac ACE= tam giac AEK ( ch-gn)--> AC=AK
ta co : AC= AK
CE=EK ( tam giac ACE= tam giac AEK)
--> A,E nam tren duong trung truc cua CK
--> AE la duong trung truc CK->AE vuong goc CK
b)xet tam giac ABC vuong tai C ta co : goc A+ goc B =90 ( 2 goc phu nhau )
-->60+goc B=90--> goc B =30
ma goc EAB=1/2 A ( AE la tia p/g goc A)--> goc EAB=1/2.60=30
vay goc EAB = goc B
tuong tu : cm goc AEK = 90- EAK =90-30=60
goc EBK=90- goc KEB =60
--> goc AEK= goc EBK
--> cm tam giac AEK = tam giac EBK ( g=c=g)
--> KA=KB
c) tu diem A den duoing thang CB ta co
AE la duong xien , AC la duong vuong goc===> AC< AE ( quan he duong xien duong vuong goc)
mã EB=EA ( tam giac AEK= tam giac EKB)
nen AC<BE
d_ xet tam giac AEB ta co
EK la duong cao, ( EK vuong foc AB)
BD la duong cao ( BD vuong foc AE
AC la duong cao ( AC vuong goc BC )
==> EK,BD,AC dong quy tai 1 diem
a) cm tam giac ACE= tam giac AEK ( ch-gn)--> AC=AK
ta co : AC= AK
CE=EK ( tam giac ACE= tam giac AEK)
--> A,E nam tren duong trung truc cua CK
--> AE la duong trung truc CK->AE vuong goc CK
b)xet tam giac ABC vuong tai C ta co : goc A+ goc B =90 ( 2 goc phu nhau )
-->60+goc B=90--> goc B =30
ma goc EAB=1/2 A ( AE la tia p/g goc A)--> goc EAB=1/2.60=30
vay goc EAB = goc B
tuong tu : cm goc AEK = 90- EAK =90-30=60
goc EBK=90- goc KEB =60
--> goc AEK= goc EBK
--> cm tam giac AEK = tam giac EBK ( g=c=g)
--> KA=KB
c) tu diem A den duoing thang CB ta co
AE la duong xien , AC la duong vuong goc===> AC< AE ( quan he duong xien duong vuong goc)
mã EB=EA ( tam giac AEK= tam giac EKB)
nen AC<BE
d_ xet tam giac AEB ta co
EK la duong cao, ( EK vuong foc AB)
BD la duong cao ( BD vuong foc AE
AC la duong cao ( AC vuong goc BC )
==> EK,BD,AC dong quy tai 1 die
:3
a: Xét ΔACE vuông tạiC và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
Do đó: ΔACE=ΔAKE
Suy ra: AC=AK và EC=EK
=>AE là đường trung trực của CK
hay AE\(\perp\)CK
b: Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
c: AC=AK=KB
mà EB>KB
nên EB>AC
Câu hỏi của Marklin_9301 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
Do đó: ΔACE=ΔAKE
Suy ra: AC=AK
b: Xét ΔEAB cógóc EAB=góc EBA
nên ΔEAB cân tại E
=>EA=EB
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB