K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
6 tháng 9 2019
$\dfrac{AB^2}{AC^2}$ = $\frac{BH}{CH}$
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó lên cạnh huyền, ta có:
$AB^2$ = BC.BH
$AC^2$ = BC. CH
Do đó: $\dfrac{AB^2}{AC^2}$ = $\dfrac{BC.BH}{BC.CH}$ = $\dfrac{BH}{CH}$ (đpcm)
$AE.AB = AF.AC$
Tam giác ABH vuông tại H có EH $\perp$ AB
Do đó: $AH^2$ = AE.AB (1)
Tam giác ACH vuông tại H có FH $\perp$ AC
Do đó: $AH^2$ = AF.AC (2)
Từ (1) và (2) suy ra AE.AB = AF.AC (đpcm)
Bài này làm hẳn ra dài lắm -,- làm tắt xíu nha
Hình chữ nhật EHFA => EH = AF ; EA = HF (thay vô chỗ nào trong bài thì tự nhìn nhé)
A B C H E F
a,Theo hệ thức lượng trong tam giác vuông ta có
\(\frac{c^3}{b^3}=\frac{AB^3}{AC^3}=\frac{AB^2}{AC^2}.\frac{AB}{AC}=\frac{BH.BC}{CH.BC}.\frac{AB}{AC}=\frac{BH.AB}{CH.AC}=\frac{BH.\frac{BH.HA}{HE}}{CH.\frac{AH.HC}{HF}}\)
\(=\frac{BH^2.HA.HF}{CH^2.HA.HE}=\frac{BH^2.HF}{CH^2.HE}=\frac{BE.BA.HF}{CF.CA.HE}\)
\(=\frac{m}{n}.\frac{BA.HF}{CA.HE}=\frac{m}{n}.\frac{BA.AE}{CA.AF}=\frac{m}{n}.\frac{AH^2}{AH^2}=\frac{m}{n}\left(dpcm\right)\)
\(b,m^2+n^2+3h^2=BE^2+CF^2+3AH^2\)
\(=BE^2+CF^2+AH^2+AH^2+AH^2\)
\(=BE^2+CF^2+AH^2+\left(AB^2-BH^2\right)+\left(AC^2-CH^2\right)\left(Py-ta-go\right)\)
\(=\left(AB^2+AC^2\right)+\left(BE^2+CF^2+AH^2-BH^2-CH^2\right)\)
\(=BC^2+\left[BE^2+CF^2+AH^2-\left(BE^2+EH^2\right)-\left(HF^2+FC^2\right)\right]\)
\(=a^2+\left(AH^2-EH^2-HF^2\right)\)
\(=a^2+\left(AH^2-EH^2-EA^2\right)\)
Theo Pytago \(AH^2=EH^2+EA^2\)nên \(m^2+n^2+3h^2=a^2+\left(AH^2-EH^2-EA^2\right)=a^2\)
\(c,\)chưa ra :P