Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
→IB+→IA−→IC−→CM=→0
=>\(\overrightarrow{IB}+\overrightarrow{IA}-\overrightarrow{IM}=\overrightarrow{0}\)
=>\(\overrightarrow{IB}+\overrightarrow{IA}=\overrightarrow{IM}\)
Đặt K là trung điểm AB
=>\(\overrightarrow{IB}+\overrightarrow{IA}=\overrightarrow{2IK}\)(T/c trung tuyến)
=>\(\overrightarrow{2IK}=\overrightarrow{IM}\)
=>K,M,I thẳng hàng
Vậy điểm M thuộc đoạn KI sao cho \(\dfrac{\overrightarrow{IK}}{\overrightarrow{IM}}=\dfrac{1}{2}\)
Dựng hình bình hành ABDC \(\Rightarrow\overrightarrow{AB}=-\overrightarrow{DC}\) ; \(\overrightarrow{AC}=-\overrightarrow{DB}\)
a/
\(\left|\overrightarrow{MC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\Leftrightarrow\left|\overrightarrow{MD}+\overrightarrow{DC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MD}\right|=\left|\overrightarrow{MA}\right|\)
\(\Rightarrow\) Tập hợp M là trung trực của đoạn thẳng AD
b/ \(\left|\overrightarrow{MA}+\overrightarrow{AC}\right|=\left|\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{AC}\right|\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MB}+\overrightarrow{AC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MD}+\overrightarrow{DB}+\overrightarrow{AC}\right|\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MD}\right|\)
Tập hợp M là trung trực đoạn CD
c/Dựng hình bình hành AEBC \(\Rightarrow\overrightarrow{EB}=-\overrightarrow{CA}\)
\(\left|\overrightarrow{MB}+\overrightarrow{CA}\right|=\left|\overrightarrow{MC}+\overrightarrow{BM}\right|\Leftrightarrow\left|\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{CA}\right|=\left|\overrightarrow{BC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{ME}\right|=\left|\overrightarrow{BC}\right|\)
Tập hợp M là đường tròn tâm E bán kính BC
Gọi M là trung điểm của cạnh BC ta có :
\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}=\overrightarrow{AD}\)
Mặt khác :
\(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CB}\)
Theo giả thiết ta có :
\(\left|2\overrightarrow{AM}\right|=\left|\overrightarrow{CB}\right|=\left|\overrightarrow{AD}\right|\) hay \(AM=\dfrac{BC}{2}\)
Ta suy ra ABC là tam giác vuông tại A
\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+\overrightarrow{BM}\right|=\left|\overrightarrow{BA}\right|=BA\).
Áp dụng tính chất trung điểm:
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|2\overrightarrow{MO}\right|=2MO\) (với O là trung điểm của AB).
Suy ra: \(AB=2OM\Rightarrow OM=\dfrac{1}{2}AB\).
+)\(\left|\overrightarrow{MA}-\overrightarrow{CA}\right|=\left|\overrightarrow{MC}\right|\)
+)\(\left|\overrightarrow{AC}-\overrightarrow{BC}\right|=\left| \overrightarrow{AB}\right|\)
=>MC=AB
=> từ đỉnh C của tam giá ABC lấy điểm M tm MC=AB