K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019
https://i.imgur.com/B2sLEB4.png
28 tháng 2 2019

dùng talet đảo

AH
Akai Haruma
Giáo viên
1 tháng 1 2020

Lời giải:

a)

Sử dụng công thức về tia phân giác ta có:

\(\frac{DI}{AI}=\frac{BD}{AB}\Rightarrow \frac{DI}{DA}=\frac{BD}{AB+BD}(1)\)

\(\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow \frac{BD}{BC}=\frac{AB}{AB+AC}\Rightarrow BD=\frac{AB.BC}{AB+AC}(2)\)

Từ \((1);(2)\Rightarrow \frac{DI}{DA}=\frac{\frac{AB.BC}{AB+AC}}{AB+\frac{AB.BC}{AB+AC}}=\frac{AB.BC}{AB(AB+BC+AC)}=\frac{BC}{AB+BC+AC}=\frac{a}{a+b+c}\)

Ta có đpcm.

b)

Sử dụng kết quả phần a:

\(\frac{DI}{DA}=\frac{a}{a+b+c}\)

Bằng cách chứng minh hoàn toàn tương tự ta cũng có:

\(\frac{EI}{EB}=\frac{b}{a+b+c}; \frac{FI}{FC}=\frac{c}{a+b+c}\)

Do đó:

\(\frac{DI}{DA}+\frac{EI}{EB}+\frac{FI}{FC}=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
1 tháng 1 2020

Hình vẽ:

Tính chất đường phân giác của tam giác

12 tháng 5 2018

Tự kẽ hình nha :

a) Xét tam giác AHB và tam giác ABC có :

\(\widehat{A}\) = \(\widehat{H}\) = 900

\(\widehat{B}\) = góc chung

=.tam giác AHB ~ tam giác CAB ( g.g)

b) ADĐL pitago và tam giác vuông ABC , có :

AB2 + AC2 = BC2

122 + 162 = BC2

BC2 = 400

=> BC = 20 cm

Vì tam giác AHB ~ tam giác CAB ( câu a) , ta có :

\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)

=.> \(\dfrac{AH}{16}\)= \(\dfrac{12}{20}\)

=> AH = 9,6 cm

c)

Thay : \(\dfrac{EA}{EB}\)= \(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)

Thành : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)= \(\dfrac{BC}{AD}\)

Mà : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)=\(\dfrac{BC}{AD}\)= 1

=> \(\dfrac{EA}{EB}\)=\(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)= 1

30 tháng 4 2021

bạn giải ý c rõ hơn đc ko