K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(\Leftrightarrow\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{AB}{2\cdot AC}\)

\(\Leftrightarrow AB^2+AC^2-BC^2=AB^2\)

=>CB=CA

hay ΔCAB cân tại C

28 tháng 8 2018

Mình tưởng phải là tam giác vuông mới có cos chứ. 

28 tháng 8 2018

kẻ đường cao tạo ra tam giác vuông là được mà

Xét ΔABC có 

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(\Leftrightarrow\dfrac{AB}{2AC}=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(\Leftrightarrow AB^2=AB^2+AC^2-BC^2\)

=>CA=CB

=>ΔCAB cân tại C

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(\Leftrightarrow\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{AB}{2\cdot AC}\)

\(\Leftrightarrow AB^2+AC^2-BC^2=AB^2\)

=>AC=BC

=>ΔCAB can tại C

24 tháng 2 2022

lkjytreedfyhgfdfgff

24 tháng 2 2022

lkjhgfgy6tyur65445676t 7 777676r64576556756777777777777/.,mnbvfggjhyjuhjtyj324345

14 tháng 6 2019

A B C D E

\(\cos^2\widehat{A}=\frac{AE^2}{AC^2}=\frac{AD^2}{AB^2}\)

Xét tam giác ADE và tam giác ABC có : 

\(\frac{AD}{AB}=\frac{AE}{AC}\) \(\left(=\cos\widehat{A}\right)\)

\(\widehat{A}\) là góc chung 

Do đó : \(\Delta ADE~\Delta ABC\left(c-g-c\right)\)

Mà tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng nên 

\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\frac{AE}{AC}\right)^2=\cos^2\widehat{A}\)\(\Rightarrow\)\(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ( đpcm ) 

làm tạm 1 câu :v 

14 tháng 6 2019

\(S_{ADE}+S_{BCDE}=S_{ABC}.1=S_{ABC}\left(\sin^2\widehat{A}+\cos^2\widehat{A}\right)\)

\(\Rightarrow\)\(S_{ADE}+S_{BCDE}=S_{ABC}.\sin^2\widehat{A}+S_{ABC}.\cos^2\widehat{A}\)

\(\Leftrightarrow\)\(S_{BCDE}=S_{ABC}.\sin^2\widehat{A}\) ( do \(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ) 

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc C chung

Do đó: ΔCDA đồng dạng với ΔCEB

Suy ra: CD/CE=CA/CB

hay \(CD\cdot CB=CE\cdot CA\left(1\right)\)

b: Xét ΔCIB vuông tại I có ID là đường cao

nên \(CI^2=CD\cdot CB\left(2\right)\)

Xét ΔCQA vuông tại Q có QE là đường cao

nên \(CQ^2=CE\cdot CA\left(3\right)\)

Từ (1), (2)và (3) suy ra CI=CQ

hay ΔCIQ cân tại C