Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu \(AM\perp DE\) thì ADME là hình vuông, suy ra AD = AE
Suy ra AB = AC
Áp dụng định lí Pytago vào hai tam giác vuông ABH và ACH, ta thấy AB < AC
Vậy KHÔNG thể chứng minh được :|
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=CM
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
Suy ra: \(\widehat{MAC}=\widehat{BCA}\)
hay \(\widehat{BAH}=\widehat{MAC}\)
a) Xét \(\Delta ABC\) vuông tại A có AH là đường trung tuyến ứng với cạnh huyền BC
\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow5=\dfrac{1}{2}BC\Rightarrow BC=10\left(cm\right)\)
Xét \(\Delta ABC\) vuông tại A có \(\cos B=\dfrac{AB}{BC}=\dfrac{6}{10}=0.6\Rightarrow\widehat{B}\approx53^o\)
\(\Rightarrow\sin B=\sin53^o\approx0.8=\dfrac{AH}{AB}=\dfrac{AH}{6}\Rightarrow AH=4,8\left(cm\right)\)
b) Xét \(\Delta ABH\) vuông tại H: \(BH=AB.\cos B\)
Tương tự: \(HC=AC.\cos C\)
Cộng hai vế của hai đẳng thức trên, ta được điều phải chứng minh
a: ΔABC vuông tại A có AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA=góc BAH
b: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
góc EAM+góc AED
=góc AHD+góc MCA
=góc ABC+góc MCA=90 độ
=>AM vuông góc ED
a: góc B=90-40=50 độ
Xét ΔABC vuông tại A có \(AB=BC\cdot sin40^0=6.43\left(cm\right)\)
=>AC=7,66(cm)
b: \(BD\cdot EC\cdot BC\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AH}=AH^3\)
a: \(HC=\dfrac{12^2}{9}=16\left(cm\right)\)
BC=9+16=25cm
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
AC=20cm
b: Xét ΔABC vuông tại A có sin B=AC/BC=4/5
nên góc B=53 độ
c: \(HA\cdot HM=BH^2\)
\(BE\cdot BA=BH^2\)
=>\(HA\cdot HM=BE\cdot BA\)