Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo lời giải tại đây nhé.
Câu hỏi của Acot gamer - Toán lớp 7 - Học toán với OnlineMath
Hình thì chú tự vẽ nhá
d) Xét tam giác AEF có AE = AF ( chứng minh phần c ) nên tam giác AEF cân tại A
Nên \(\widehat{AEF}=\widehat{AFE}=\frac{180^o-\widehat{EAF}}{2}\)
Xét \(\Delta BNE\)và \(\Delta CIF\)có :
\(\widehat{BNE}=\widehat{CIF}=90^o;BE=CF;\widehat{AEF}=\widehat{AFE}\)
Khi đó \(\Delta BNE=\Delta CIF\)( cạnh huyền góc nhọn )
Nên \(NE=IF\)(hai cạnh tương ứng )
Ta có \(AN+NE=AE;AI+IF=AF\)mà \(AE=AF;NE=IF\)nên \(AN=AI\)
Xét tam giác ANI có AN = AI nên tam giác ANI cân tại A nên \(\widehat{ANI}=\widehat{AIN}=\frac{180^o-\widehat{NAI}}{2}\)
Khi đó \(\widehat{ANI}=\widehat{AEF}=\frac{180^o-\widehat{EAF}}{2}\)mà hai góc này nằm ở vị trí đồng vị của NI và EF cắt bởi AE nên theo dấu hiệu nhận biết hai đường thẳng song song ta có \(NI//EF\)
Vậy....
A E F B C M N I
a) Xét ha tam giác ABM và ACM có:
\(\hept{\begin{cases}BM=MC\left(gt\right)\\AM:chung\\AB=AC\left(gt\right)\end{cases}\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)}\)
b) Ta có: AB = AC => tam giác ABC cân tại A
Tam giác cân ABC có AM là đường trung tuyến
Nên cũng đồng thời là đường cao
Suy ra: AM vuông góc với BC
c) Ta có: Tam giác ABC cân tại A => \(\widehat{ABM}=\widehat{ACM}\)
Mà \(\widehat{ABM}+\widehat{ABE}=180^0\)
\(\widehat{ACM}+\widehat{ACF}=180^0\)
Suy ra: \(\widehat{ABE}=\widehat{ACF}\)
Xét hai tam giác ABE và ACF có:
\(\hept{\begin{cases}BE=CF\\\widehat{ABE}=\widehat{ACF}\\AB=AC\end{cases}\Rightarrow\Delta ABE}=\Delta ACF\left(c-g-c\right)\)
d) Ta có: AE = AF (cmt)
=> Tam giác AEF cân tại A
Suy ra: \(\widehat{AFE}=\widehat{AEF}=\frac{180^0-\widehat{EAF}}{2}\) (1)
Xét hai tam giác vuông BNE và CIF: \(\hept{\begin{cases}BE=CF\\\widehat{E}=\widehat{F}\end{cases}\Rightarrow\Delta BNE=\Delta CIF}\) (cạnh huyền -góc nhọn)
=> NE = IF
Ta có: AE = AF (Gt); NE = IF (cmt)
=> AE - NE = AF - IF
=> AN = AI
=> Tam giác ANI cân tại I
Suy ra: \(\widehat{ANI}=\widehat{AIN}=\frac{180^0-\widehat{EAF}}{2}\) (2)
Từ (1) và (2) suy ra: \(\widehat{AIN}=\widehat{AFE}\)
Mà hai góc này ở vị trí đồng vị
Nên NI // EF
Em tham khảo lời giải tại đây nhé.
Câu hỏi của Acot gamer - Toán lớp 7 - Học toán với OnlineMath
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Đỗ Hương GiangNguyễn Lê Hoàng ViệtNguyễn Huy ThắngNguyễn Huy Tú
Trần Việt LinhVõ Đông Anh TuấnPhương An