Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\)
Theo đly Py-ta-go có:
\(AB^2=AH^2+BH^2\Rightarrow BH=\sqrt{AB^2-AH^2}=10cm\)
Làm tg tự vs \(\Delta ACH\) \(\Rightarrow CH=7cm\)
Vậy BC= BH+CH=10+7=17cm
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng)
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) HB = MH - BM
=> HB = a - (x+1)/2
=> HB^2 = (a - (x+1)/2)^2 HC = HB + BC
=> HC = a - x/2 + x
=> HC^2 = (a + (x+1)/2)^2
Ta có AH^2 = AC^2 - HC^2 AH^2 = AB^2 - HB^2
=> AC^2 - HC^2 = AB^2 - HB^2
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4
<=> 2ax + 2a - 4x - 4 = 0
<=> 2a(x+1) - 4(x+1) = 0
<=> (x + 1).2(a - 2) = 0
<=> x = -1 hoặc a = 2 hay AB = -1 hoặc HM = 2
Tham khảo
Đặt AB = x , BC = x + 1 , AC = x + 2 , MH = a Xét 3 trường hợp
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng)
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) HB = MH - BM
=> HB = a - (x+1)/2
=> HB^2 = (a - (x+1)/2)^2 HC = HB + BC
=> HC = a - x/2 + x
=> HC^2 = (a + (x+1)/2)^2
Ta có AH^2 = AC^2 - HC^2 AH^2 = AB^2 - HB^2
=> AC^2 - HC^2 = AB^2 - HB^2
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4
<=> 2ax + 2a - 4x - 4 = 0
<=> 2a(x+1) - 4(x+1) = 0
<=> (x + 1).2(a - 2) = 0
<=> x = -1 hoặc a = 2 hay AB = -1 hoặc HM = 2
Đặt AB = x , BC = x + 1 , AC = x + 2 , MH = a Xét 3 trường hợp
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng)
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) HB = MH - BM
=> HB = a - (x+1)/2
=> HB^2 = (a - (x+1)/2)^2 HC = HB + BC
=> HC = a - x/2 + x
=> HC^2 = (a + (x+1)/2)^2
Ta có AH^2 = AC^2 - HC^2 AH^2 = AB^2 - HB^2
=> AC^2 - HC^2 = AB^2 - HB^2
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4
<=> 2ax + 2a - 4x - 4 = 0
<=> 2a(x+1) - 4(x+1) = 0
<=> (x + 1).2(a - 2) = 0
<=> x = -1 hoặc a = 2 hay AB = -1 hoặc HM = 2
a.Tu gia thuyet suy ra:\(AC=20\left(cm\right)\)
Ta co:\(AH=\frac{AB.AC}{\sqrt{AB^2+AC^2}}=\frac{15.20}{\sqrt{15^2+20^2}}=20\left(cm\right)\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{225+400}=\sqrt{625}=25\left(cm\right)\)
b.Ta co:\(BH=\frac{AB^2}{BC}=\frac{225}{25}=9\left(cm\right)\)
\(CH=\frac{AC^2}{BC}=\frac{400}{25}=16\left(cm\right)\)
A B C H
a)Ta có: AB/AC=3/4 =)AC=4*AB/3=4*15/3=2
áp dụng đjnh lí Pytago tong tam giác vuông ABC, ta có:
BC^2=AB^2+AC^2
=15^2+20^2
= 225+400
=625
BC = căn 625=25
Vì ABC là tam giác vuông nên
áp dụng hệ thức lượng, ta dc
AB^2=HB*BC
hay 15^2=HB*25
HB=225/25=9
=)HC=25-9=16
và AH^2=HB*HC
=9*16=144
AH=căn 144=12
câu b là đoạn từ vì tam ABC đến HC=16 NHÉ BN
MK vẽ hình hơi xấu bn thông cảm hihi
Xét tam ABH có góc H = 90 độ(gt)
Theo định lí Pitago ta có:
\(BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=30^2-24^2=900-576=324\)
\(\Rightarrow BH=\sqrt{324}=18\left(cm\right)\)
Xét tam AHM có góc H = 90 độ(gt)
Theo định lí Pitago ta có
\(HM^2=AM^2-AH^2=25^2-24^2=625-576=49\)
\(HM=\sqrt{49}=7\left(cm\right)\)
Xét tam ABC có
BM=BH+HM=18+7=25(cm)
BM = MC(t/c đường trung tuyến)
=>BC=BM+MC=2BM=2*25=50(cm)
Xét tam AHC có
HC=HM+MC=7+25=32(cm)
theo định lí Pitago, ta có:
\(AC^2=AH^2+HC^2=24^2+32^2=1600\)
\(\Rightarrow AC=\sqrt{1600}=40\left(cm\right)\)
Xét tam ABC có
\(BC^2=50^2=2500\)(1)
\(AB^2+AC^2=30^2+40^2=900+1600=2500\left(2\right)\)Theo định lí Pitago đảo kết hợp (1)(2)
=>Tam ABC vuông tại A(dpcm)
A B C M 2cm 2cm 2cm
a) Vì AM là trung tuyến của \(\Delta ABC\)tại A \(\Rightarrow MB=MC\)
Vì \(\Delta ABM\)là tam giác đều có cạnh là 2cm\(\Rightarrow AB=AM=BM=2cm\)
Do đó độ dài cạnh BC là : \(2+2=4cm\)
Áp dụng định lý Py-ta-go trong tam giác vuông ABC ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
\(\Leftrightarrow AC^2=4^2-2^2=16-4=12\)
\(\Rightarrow AC=\sqrt{12}\left(cm\right)\)
b) Diện tích \(\Delta ABC\)là : \(\frac{1}{2}\left(AB.AC\right)=\frac{2.\sqrt{12}}{2}=\sqrt{12}\left(cm^2\right)\)
ΔABHΔABH vuông tại H, theo định lí Py-ta-go ta có:
AB2 = AH2 + BH2
⇒⇒ BH2 = AB2 - AH2
BH2 = 252 - 242
BH2 = 49
⇒⇒ BH = 49−−√49 = 7 (cm)
ΔACHΔACH vuông tại H, theo định lí Py-ta-go ta có:
AC2 = AH2 + CH2
CH2 = AC2 - AH2
CH2 = 262 - 242
CH2 = 100
⇒⇒ CH = 100−−−√100 = 10 (cm)
Mà BC = BH + CH
⇒⇒ BC = 7 + 10 = 17 (cm)
Vậy BC = 17 (cm).
https://olm.vn/hoi-dap/detail/37669452145.html
Bạn xem ở link này nhé(mik gửi vào tin nhắn)
Chúc học tốt@@!!!!