Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC vuông tại A có AD vuông góc với BC
=> AB2B=DC.BC; AC2=DC.BC
tam giác ABD vuông tại D có DF vuông góc với AB =>BD2=BF.AB
Tương tự DC2=CE.AC
Ta có \(\dfrac{AC^2}{AB^2}\)=\(\dfrac{DC.BC}{DB.BC}\)=\(\dfrac{DC}{DB}\)
=> \(\dfrac{AC^4}{AB^4}\)= \(\dfrac{DC^2}{DB^2}\)=\(\dfrac{CE.AC}{BF.AB}\)
=>\(\dfrac{AC^3}{AB^3}\)=\(\dfrac{CE}{BF}\)
2/ gọi E là giao của BH với AC; F là giao của CH với AB
=>BE vuông góc với AC; CF vuông góc với AB
Xét tam giác AC1B có C1F vuông góc với AB =>AC12=AF.AB (1)
Tương tự AB12=AE.AC (2)
C/m tam giác AEB đồng dạng với tam giác AFC (g.g)
=> \(\dfrac{AE}{AF}\)=\(\dfrac{AB}{AC}\) => AE.AC=AF.AB (3)
Từ (1);(2) và (3) => AB1=AC1
a. Hai tam giác vuông \(AEC,AFB\) có chung góc nhọn đỉnh A nên đồng dạng với nhau. Suy ra \(\frac{AE}{AF}=\frac{AC}{AB}\to\Delta AEF\sim\Delta ABC\left(c.g.c\right)\). Từ đây, sử dụng tính chất tỉ số diện tích bằng bình phương tỉ số đồng dạng, cho ta \(\frac{S_{AEF}}{S_{ABC}}=\left(\frac{AE}{AB}\right)^2=\left(\cos\angle BAC\right)^2.\)
b. Xét hai tam giác \(\Delta KMN,\Delta BHA\) có \(KM\parallel BA,KN\parallel BH,MN\parallel AH\to\Delta KMN\sim\Delta BHA\left(g.g\right)\) (các góc tạo bởi các cạnh tương ứng song song thì bằng nhau). Đặc biệt ta suy ra \(\frac{KM}{KN}=\frac{BH}{BA}\to BH\cdot KM=BA\cdot KN.\)
c. Theo câu b., vì hai tam giác \(\Delta KMN,\Delta BHA\) đồng dạng nên \(\frac{KN}{BH}=\frac{MN}{AH}=\frac{1}{2}\to\) theo định lý Ta-let, đường thẳng KB cắt HN ở điểm G' sao cho \(\frac{G'N}{G'H}=\frac{1}{2}.\) Suy ra G' là trọng tâm tam giác AHC. Mặt khác theo giả thiết G là giao điểm của HN và AM, là hai trung tuyến của tam giác AHC. Suy ra G cũng là trọng tâm tam giác AHC. Vậy G và G' trùng nhau. Đặc biệt ta suy ra \(K,G,B\) thẳng hàng.
Theo tính chất trọng tâm và định lý Ta-let, ta có \(\frac{GA}{GM}=\frac{GB}{GK}=\frac{GH}{GN}=2\to\left(\frac{GA}{GM}\right)^5=\left(\frac{GB}{GK}\right)^5=\left(\frac{GH}{GN}\right)^5=32\)
Do đó theo tính chất tỉ lệ thức: \(\left(\frac{GA}{GM}\right)^5=\left(\frac{GB}{GK}\right)^5=\left(\frac{GA}{GN}\right)^5=32=\frac{GA^5+GB^5+GH^5}{GM^5+GK^5+GN^5}\)
Suy ra \(\sqrt{\frac{GA^5+GB^5+GH^5}{GM^5+GK^5+GN^5}}=\sqrt{32}=4\sqrt{2}.\) (ĐPCM)