\(\Delta ABC\) có AB=AC. Tia phân của \(\widehat{B}\) và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

16 tháng 1 2020

a) Xét \(\Delta ABC\) có:

\(AB=AC\left(gt\right)\)

=> \(\Delta ABC\) cân tại A.

=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).

b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

\(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).

=> \(\widehat{ABC}=\widehat{ECK}.\)

Hay \(\widehat{DBH}=\widehat{ECK}.\)

Xét 2 \(\Delta\) vuông \(DBH\)\(ECK\) có:

\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)

\(DB=EC\left(gt\right)\)

\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)

=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).

=> \(DH=EK\) (2 cạnh tương ứng).

c) Xét 2 \(\Delta\) vuông \(DHI\)\(EKI\) có:

\(\widehat{DHI}=\widehat{EKI}=90^0\)

\(DH=EK\left(cmt\right)\)

\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)

=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).

=> \(DI=EI\) (2 cạnh tương ứng).

=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)

Chúc bạn học tốt!

Bài 1:

a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng

Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có

AE chung

\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)

Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)

⇒AB=AF(hai cạnh tương ứng)

b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé

Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)

nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)

c)

Xét ΔABC có AB<AC(gt)

mà góc đối diện với cạnh AB là góc C

và góc đối diện với cạnh AC là góc B

nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)

hay \(\widehat{ABC}>\widehat{C}\)(đpcm)