\(\Delta ABC\) có AB = AC = BC. Lấy M nằm trong tam giác sao cho MA = MB = MC

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(AMB\)\(BMC\) có:

\(AM=BM\left(gt\right)\)

\(MB=MC\left(gt\right)\)

\(AB=BC\left(gt\right)\)

=> \(\Delta AMB=\Delta BMC\) (c . c . c) (1)

Xét 2 \(\Delta\) \(AMB\)\(CMA\) có:

\(AM=CM\left(gt\right)\)

\(AB=AC\left(gt\right)\)

\(MB=MA\left(gt\right)\)

=> \(\Delta AMB=\Delta CMA\) (c . c . c) (2)

Từ (1) và (2) => \(\Delta AMB=\Delta BMC=\Delta CMA\left(đpcm\right).\)

Còn câu b) thì mình đang nghĩ nhé.

Chúc bạn học tốt!

11 tháng 8 2019

hình mik tự vẽ được cảm ơn nhìu

16 tháng 12 2018

A B C D E F 60 o 80 o

c, Do \(\Delta ADE=\Delta DBF\) ( câu b )

\(\Rightarrow\widehat{AED}=\widehat{DFB}\)

Mà 2 góc này nằm ở vị trí đồng vị

\(\Rightarrow DF//AE\)

Hay \(DF//AC\)

16 tháng 12 2018

ko vẽ hình nha mình chỉ làm câu a thôi 

vì tổng ba góc tam giác bawfng180 độ nên

A +B +C =180

60+80 +C =180

120+C =180

C=180-120

C= 60

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)d)Hãy...
Đọc tiếp

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)

a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)

b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.

c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)

d)Hãy cho biết khẳng định\("\)nếu \(\widehat{BAC}=\frac{\widehat{AMC}+\widehat{BMC}+\widehat{AMB}}{6}\)thì điểm \(M\)cách đều các cạnh của \(\Delta ABC\)\("\)có đúng không?Vì sao?

e)Trên một nửa mặt phẳng có chứa điểm \(C\) bờ \(AB,\)vẽ  tam giác đều \(ABF.\)Giả sử rằng \(\widehat{BAC}=\widehat{ACB}+\widehat{ABC}\)và \(AB=\frac{1}{2}BC,\)chứng minh \(F\)là trung điểm của \(BC.\)

3
26 tháng 5 2017

bài này khó nhất là hai câu a và c.

26 tháng 5 2017

a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )

Gọi giao điểm của AB và CD là K

Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)

\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)

\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)

Gọi J là trung điểm DM

C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)

rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)

5 tháng 8 2018

Bài 1:

a) Xét tam giác ABM và tam giác ACM

có: AB = AC (gt)

góc BAM = góc CAM (gt)

AM là cạnh chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)

b) Xét tam giác ABC

có: AB = AC

=> tam giác ABC cân tại A ( định lí tam giác cân)

mà AM là tia phân giác xuất phát từ đỉnh A ( M thuộc BC)

=> M là trung điểm của BC, AM vuông góc với BC ( tính chất đường phân giác, đường cao, đường trung trực, đường trung tuyến, đường cao xuất phát từ đỉnh tam giác cân)

5 tháng 8 2018

Bài 2:

a) Xét tam giác ABD và tam giác EBD

có: AB = EB (gt)

góc ABD = góc EBD (gt)

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)

b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AD = ED ( 2 cạnh tương ứng)

c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> góc BAD = góc BED ( 2 góc tương ứng)

mà góc BAD = 90 độ ( tam giác ABC vuông tại A)

=> góc BED = 90 độ

20 tháng 7 2018

a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A. 
AD = AE (gt) 
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc) 
=> tgiácACD = tgiácAME (g.c.g) 
b/ ta có: AG//EH (cùng vuông góc với CD) 
=> AG // IH 
mà gt => AI // GH 
vậy AGHI là hình bình hành 
=>AG = IH. 
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME 
=> AM = AC = AB 
=> A là trung điểm BM, mà AI // BC 
=> AI là đường trung bình của tgiác MBH 
=> I là trung điểm của MH. 
vậy: IM = IH = AG 
có: AM = AB 
góc BAG = góc AMI (so le trong) 
=> tgiác AGB = tgiác MIA ( c.g.c) 
c/ có AG//MH, A là trung điểm BM 
=> AG là đường trung bình của tgiácBMH 
=> G là trung điểm BH 
hay BG = GH.

19 tháng 12 2017

A B C M

a) Theo định lí Py-ta-go đảo ta có :

\(\Delta ABC\)có : AC2 + AB2 = BC2 ( 322 + 242 = 402 )

\(\Rightarrow\)\(\Delta ABC\)vuông tại A ( đpcm )

b)Áp dụng định lí Py-ta-go vào \(\Delta AMB\)có :

MB2 = AM2 + AB2 

\(\Rightarrow\)MB2 = 72 + 242 = 625 = 252

\(\Rightarrow\)MB = 25

ta có : M nằm giữa A và C ( vì M thuộc AC ) nên AM + MC = AC

hay  7 + MC = 32

\(\Rightarrow\)MC = 32 - 7 = 25

vì MC = MB nên \(\Delta BMC\)cân tại M

xét \(\Delta BMC\)cân tại M có : \(\widehat{C}=\widehat{MBC}\)

Mà \(\widehat{AMB}\)là góc ngoài của \(\Delta BMC\)nên \(\widehat{AMB}\)\(\widehat{C}+\widehat{MBC}\)hay \(\widehat{AMB}\)\(2\widehat{C}\)( đpcm )

19 tháng 12 2017

Tại sao \(\Delta AMB\)vuông?

16 tháng 12 2018

Cái này mk áp dụng lp 8 nha !

Xét tam giác ABC có : AB=DB(GIẢ THIẾT)

                                    AE=EC(GIẢ THIẾT)

               =) DE là đường trung bình của tam giác ABC 

              =) DE = 1/2 BC

Đến chỗ này mk sửa cho bn phần b nha ! phải là cm tam giác DBF = 1/2 tam giác ABC nha ( mk nghĩ vậy )

=) BF=1/2BC =) FC = ED ( cùng bằng 1/2 BC ) 

Xét tam giác ABC có :

            FC = ED(CMT)

           BF = FC (Vì FC =1/2 AB nên  F là trung điểm của BC )

Nên ta có DF là đường trung bình tam giác ABC =) DF song song vs AC .

Chúc bn học tốt nha !