K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

A B C M

Ta có: \(AB^2+AC^2=6^2+8^2=100\)

            \(BC^2=10^2=100\)

 \(\Delta ABC\) có \(AB^2+AC^2+BC^2\left(=100\right)\)

Theo định lí đảo Py-ta-go có \(\Delta ABC\) vuông tại A 

Mà AM là đường trung tuyến của \(\Delta ABC\) 

Do đó: \(AM=\frac{BC}{2}=5\left(cm\right)\)

 

17 tháng 4 2016

Bạn lớp mấy vậy

a: \(\text{Δ}ABC\sim\text{Δ}HBA;\text{Δ}ABC\sim\text{Δ}HCA\)

b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

CH=BC-BH=25-9=16(cm)

19 tháng 2 2016

VÌ  AM là đường phân giác đồng thời là trung tuyến nên tam giác ABC cân

21 tháng 4 2016

TỰ VẼ HÌNH NHA BN :

a)Áp dụng định lí PY-ta-go vào tam giác uông ABC có:

BC^2=AB^2+AC^2

BC^2=6^2+8^2

BC^2=36+64

BC^2=100

BC^2=\(\sqrt{100}\)=>BC=10cm

 

21 tháng 4 2016

Các bạn làm câu b,c,d giúp mình đi câu a mình tụ làm đc rùi

27 tháng 2 2016

A B C M H

Kẻ AH  |  BC.

Xét \(\Delta AHB\) vuông tại H:

\(AH^2+HB^2=AB^2\) (Định lý Pytago)

\(\Rightarrow AH^2=AB^2-HB^2\)

Xét \(\Delta AHM\) vuông tại H:

\(AH^2+HM^2=AM^2\)(Định lý Pytago)

\(\Rightarrow\left(AB^2-HB^2\right)+HM^2=AM^2\)

\(AB^2+\left(HM-HB\right)\left(HM+HB\right)=AB^2+BM.\left(HM-HB\right)=AB^2+\frac{1}{2}BC\left(HM-HB\right)=AM^2\)

\(\Rightarrow AB^2=AM^2-\frac{1}{2}BC\left(HM-HB\right)\)

Xét \(\Delta AHC\) vuông tại H:

\(AH^2+HC^2=AC^2\)(Định lý Pytago)

\(\Rightarrow AC^2-AM^2=HC^2-HM^2=\left(HC-HM\right)\left(HC+HM\right)=MC\left(HC+HM\right)=\frac{1}{2}BC\left(HC+HM\right)\)

\(\Rightarrow AC^2=AM^2+\frac{1}{2}BC\left(HC+HM\right)\)

\(\Rightarrow AB^2+AC^2=AM^2-\frac{1}{2}BC\left(HM-HB\right)+AM^2+\frac{1}{2}BC\left(HC+HM\right)\)

\(=2AM^2+\frac{1}{2}BC.\left(HC+HM-HM+HB\right)\)

\(=2AM^2+\frac{1}{2}BC^2\)

\(\Rightarrow2\left(AB^2+AC^2\right)=2\left(2AM^2+\frac{1}{2}BC^2\right)\)

\(2AB^2+2AC^2=4AM^2+BC^2\)

\(\Rightarrow2AB^2+2AC^2-BC^2=4AM^2\)

 

 

 

27 tháng 2 2016

áp dụng hệ thức lượng trong tam giác 
AM2=(AB2+AC2)/2-BC2/4 
2AM2=AB2+AC2-1/2.BC2 
2AM2+1/2.BC2=AB2+AC2-1/2BC2+1/2BC2=AB2... 
chúc bạn thành công!!!

9 tháng 5 2018

Hỏi đáp Toán

a) \(BC.AH=AB.AC=6.8=48cm^2\) (bằng 2 lần diện tích ABC).

b) HAB và HAC là 2 tam giác vuông có \(\stackrel\frown{HBA}=\widehat{HAC}\) (cùng phụ với \(\widehat{BCA}\)) nên HAB đồng dạng với HAC. Từ đó \(\dfrac{HB}{AH}=\dfrac{AH}{HC}\Rightarrow HB.HC=AH^2\) (đây là hệ thức lượng quen thuộc trong tam giác vuông: đường cao thuộc cạnh huyền bằng trung bình nhân của hai cạnh góc vuông)

c) Áp dụng Pitago ta có \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10cm\). Từ đó \(BE=BCV-CE=10-4=6cm=BA\).

Ta có \(BE^2=BA^2=BH.BC\) (chứ không phải là \(BH.CH\) nhé).

d) Không biết là bạn cần tính gì? Nếu là cần tính diện tích của tam giác CED thì có thể làm như sau:

Áp dụng tính chất phân giác có \(\dfrac{CD}{AD}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\Rightarrow\dfrac{CD}{CA}=\dfrac{CD}{CD+AD}=\dfrac{5}{3+5}=\dfrac{5}{8}\)

\(\dfrac{dt_{CED}}{dt_{CAB}}=\dfrac{CE}{CB}.\dfrac{CD}{CA}=\dfrac{4}{10}.\dfrac{5}{8}=\dfrac{1}{4}\), do đó \(dt_{CED}=\dfrac{1}{4}dt_{ABC}=\dfrac{1}{4}.\dfrac{1}{2}.6.8=6cm^2\)

12 tháng 8 2019

Tại sao (diện tích tam giác ced / diện tích tam giác cab) =ce/cb*cd/ca

5 tháng 4 2016

a,tam giácABM và tam giác ACM co : 

      AC=AB (2 cạnh bên của tam giác cân)

     AM: canh chung

     MC=MB(M là trung điểm BC)

suy ra: tam giác ABM =tam giác ACM (cạnh góc cạnh)

b: xét 2 tam giác vuông MKC và tam giác BHM co:

               MC=MB (M là trung điểm BC )

              góc B = góc C ( hai góc đáy)

suy ra: tam giác CMK= tam giác BMH ( cạnh huyền góc nhọn) 

suy ra BH=CK (2 cạnh tương ương)

c,tự nghĩ nha

21 tháng 1 2017

@

16 tháng 3 2016

A B C M

Mình giải câu a trước nhé!

Xét tam giác ABM và tam giác ACM có:

Góc A1=A2(chỗ này mình lười viết góc) (Phân giác góc A)

AB=AC(tam giác ABC cân tại A)

AM chung

=> Tam giác ABM=ACM(c-g-c)

16 tháng 1 2017

Umk, thanks bn nhìu nha.