Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔAHK vuông tại H và ΔDHB vuông tại H có
HA=HD
HK=HB
Do đó:ΔAHK=ΔDHB
2: Xét tứ giác AKDB có
H là trung điểm của AD
H là trung điểm của BK
Do đo: AKDB là hình bình hành
Suy ra: AK//BD
3: Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đo: ΔBAD cân tại B
=>BA=BD
B A C H E I D K
\(a)\)Xét \(\Delta ABH\) và \(\Delta KIH\) có:
\(HA=HK\left(gt\right)\)
\(\widehat{BHA}=\widehat{KHI}\left(đ^2\right)\)
\(HB=HI\left(gt\right)\)
\(\Rightarrow\Delta AHB=\Delta KIH\left(c.g.c\right)\)
\(b)\widehat{BAH}=\widehat{HKI}\left(\Delta AHB=\Delta KIH\right)\)
Mà hai góc ở vị trí so le trong
\(\Rightarrow AB//KI\)
\(c)AB\perp AC\)
\(AB//KI\)
\(\Rightarrow KI\perp AC\)
\(\Rightarrow IE\perp AC\)
\(\Rightarrow IK\equiv IE\)
\(\Rightarrow K,I,E\) thẳng hàng
\(d)\)Sai đề
a) Áp dụng định lý pytago , ta có tam giác ABC vuông tại A, AB = 6cm và AC = 8cm
=> BC2 = AB2 + AC2 = 36+ 64 = 100
=> BC = 10 cm
b) Xét tam giác AHD và tam giác AHB có ;
AH chung
góc AHD = góc AHB
HD = HB
=> tam giác AHD = tam giác AHB ( c.g.c )
=> AB = AD ( 2 cạnh tương ứng )