Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho : B=\(\frac{4}{3}\)+\(\frac{10}{9}\)+\(\frac{28}{27}\)+...+\(\frac{3^{98}+1}{3^{98}}\)CM : B<100
\(B=\frac{3^n+1}{3^n}=1+\frac{1}{3^n}=C+D\)
B có 98 số hạng => C=98
\(D=\frac{1}{3}+\frac{..1}{3^{97}}+\frac{1}{3^{98}}\)
3.D=1+1/3+....+1/3^97
tRỪ CHO NHAU
2D=1-1/3^98
\(C=\frac{1}{2}-\frac{1}{2.3^{98}}< \frac{1}{2}\)
\(B=98+\frac{1}{2}-\frac{1}{2.3^{98}}< 99< 100\) có lẽ đề lấy 100 co chẵn. hay cộng nhầm ai tets hộ cái
A=\(\frac{4}{3}+\frac{10}{3^2}+...+\frac{3^{98}+1}{3^{98}}\)
=> A>\(\frac{3}{3}+\frac{9}{9}+...+\frac{3^{98}}{3^{98}}\) = 1+1+..+1 =98
A=\(\frac{3}{3}+\frac{9}{9}+...+\frac{3^{98}}{3^{98}}\) +\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)> 1+1+..+1 = 98
Đặt B = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
=> 3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)
=>2B = 1-\(\frac{1}{3^{98}}\) <1
=> B<1
=>A<99
=>98<A<99
TA co
22b=1+1/22+1/2^4+...+1/2^96+1/2^98
b=1/2^2+1/2^4+1/2^6+.......+1/2^98+1/2^100
tu 2 dong tren tru ve theo ve TA co 3b=1-1/200
suy ra b=1/1/200 /3=1/3-1/200 /3 be hon 1/3
nen b be hon 1/3
Đặt \(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}\)là A
Ta có :A = \(\frac{1}{2}\left(1-\frac{1}{2^{100}}\right)\)
Vì 1-...
C=1+3+32+.............+3100
C=\(\frac{3C-C}{2}\)
3C=3+32+33+.............+399+3100+3101
C=1+3+32+..................+399+3100
3C-C=(3+32+33+.............+399+3100+3101)-(1+3+32+..................+399+3100)
Triệt tiêu các số hạng co giá trị tuyệt đối bằng nhau, ta được:
2C=-1+3100
\(\Rightarrow C=\frac{3^{100}-1}{2}\)
D=\(\frac{2D+D}{3}\)
2D=2101-2100+299-298+..............+23-22
D=2100-299+298-297+............+22-2
2D+D=2101-2100+299-298+..............+23-22+2100-299+298-297+............+22-2
Triệt tiêu các số hạng có giá trị tuyệt đối bằng nhau, ta được:
3D=2101-2
\(\Rightarrow D=\frac{2^{101}-2}{3}\)
B=\(\frac{3}{1\times4}+\frac{5}{4\times9}+\frac{7}{9\times16}+.........+\frac{19}{81\times100}\)
Quan sát biểu thức, ta có nhận xét:
4-1=3;
9-4=5;
16-9=7;
.......;100-81=19
=> Hiệu hai số ở mẫu bằng giá trị ở tử
\(\Rightarrow B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.......+\frac{1}{81}-\frac{1}{100}\)
\(\Rightarrow B=1-\frac{1}{100}\)
\(B=\frac{99}{100}< \frac{100}{100}\)
Vậy B<1
mk doan la` de sai, sua: \(\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)
\(=\frac{3^7.\left(3^2-2^3\right)+2^{10}.\left(3^2-2^3\right)}{3^7.\left(3^3-2^2\right)+2^{10}.\left(3^3-2^2\right)}=\frac{3^7+2^{10}}{\left(3^7+2^{10}\right).24}=\frac{1}{24}\)
\(B=\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}\)
\(=\frac{3+1}{3}+\frac{3^2+1}{3^2}+\frac{3^3+1}{3^3}+...+\frac{3^{98}+1}{3^{98}}\)
\(=1+\frac{1}{3}+1+\frac{1}{3^2}+1+\frac{1}{3^3}+...+1+\frac{1}{3^{98}}\)
\(=98+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)
\(\text{Đặt }A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
\(\text{rút gon cái A thì dc: }A=\frac{1}{3^{98}}-1\Rightarrow B=98+\frac{1}{3^{98}}-1=97+\frac{1}{3^{98}}\)
\(<100\text{ là chắc}\)