Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M là số chia hết cho 9 => a chia hết cho 9 => b chia hết cho 9 => c chia hết cho 9 và rõ ràng a; b; c khác 0
Lại có: M gồm 1999 chữ số, mà mỗi số < 9 nên a < 9.1999 = 17 991 là số có 5 chữ số => b < 5.9 = 45
Mà b chia hết cho 9 và khác 0 nên b = 18; 27; 36 hoặc 45
Khi b nhận giá trị nào trong 4 giá trị trên đều có tổng các chữ số = 9
Vậy c = 9
- Vì N là số tự nhiên có hai chữ số nên đặt \(N=\overline{ab}\) \(\left(0< a\le9;0\le b\le9;a,b\in N\right)\)
Ta có \(S\left(N\right)=S\left(\overline{ab}\right)=ab\) ; \(P\left(N\right)=P\left(\overline{ab}\right)=a+b\)
Vì \(N=S\left(N\right)+P\left(N\right)\) nên \(\overline{ab}=ab+a+b\)
\(\Rightarrow10a+b=ab+a+b\)
\(\Rightarrow9a=ab\Rightarrow b=9\) (vì a khác 0)
Vậy chữ số hàng đơn vị của N là 9 ---> chọn E
\(\text{Giải}\)
\(A=\left(2^9\right)^{2017}=512^{2017}\left(\text{chia 9 dư 8}\right)\Rightarrow\hept{\begin{cases}B\text{ chia 9 dư 8}\\C\text{ chia 9 dư 8}\end{cases}}\Rightarrow\text{tổng các c/s của C chia 9 dư 8}\)
\(A< 10^{6051}\Rightarrow B< 999...99\left(\text{6052 chữ số}\right)\Rightarrow B< 9.6052=54468\)
\(\Rightarrow C\le4+9+9+9+9=38\)
\(\text{Ta có kí hiệu S(C)= tổng các chữ số của C}\)
\(\Rightarrow S\left(C\right)\le3+8=11\). Theo câu trên ta có:
S(C) chia 9 dư 8=>S(C)=8
Vậy: S(C)=8 (hay tổng các chữ số của C là 8)
Hơi nhầm tí:
sửa:
từ đoạn C=< đến hết nhá
\(\Rightarrow S\le4+9+9+9+9=40\)
\(\Rightarrow S\left(C\right)\le3+9=12\)
đoạn tiếp theo tương tự như lúc đầu nhé! :)