Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ giả thiết ab+bc+ca = 3abc\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
ta có \(\frac{1}{a+2b+3c}=\frac{1}{a+c+b+c+b+c}\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)
tương tự ta cũng có\(\hept{\begin{cases}\frac{1}{2a+3b+c}\le\frac{1}{36}\left(\frac{2}{a}+\frac{3}{b}+\frac{1}{c}\right)\\\frac{1}{3a+b+2c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\end{cases}}\)
cộng theo vế \(\Rightarrow VT\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}\)
\("="\)khi a=b=c=....
hic :( tự đăng rồi tự giải ra luôn :((( sorry mn
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
Bài 2:
\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)
\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)
\(\Rightarrow P\ge\sqrt[3]{3}\)
Dấu bằng xẩy ra khi a=b=c=3
Bài 1:
\(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)
Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)
\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)
Áp dụng bđt AM-GM ta có:
\(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)
\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)
\(\Rightarrow\)(*) luôn đúng
Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)
Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)
Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)
\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)
\(ab+bc+ac=36abc\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=36\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=36\left(1\right)\)
\(M=\frac{1}{a+b+a+c}+\frac{1}{a+b+b+c}+\frac{1}{a+c+b+c}\)
áp dụng BĐT cô si
\(\Rightarrow M\le\frac{1}{2}.\left(\frac{1}{\sqrt{ab}+\sqrt{ac}}+\frac{1}{\sqrt{ab}+\sqrt{bc}}+\frac{1}{\sqrt{ac}+\sqrt{bc}}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{\sqrt{a}.\left(\sqrt{b}+\sqrt{c}\right)}+\frac{1}{\sqrt{b}.\left(\sqrt{a}+\sqrt{c}\right)}+\frac{1}{\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)
\(\left(\frac{1}{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)}+\frac{1}{\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)}+\frac{1}{\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)
\(\le\frac{1}{2}.\left(\frac{1}{\sqrt{a}.\sqrt{\sqrt{bc}}}+\frac{1}{\sqrt{b}.\sqrt{\sqrt{ac}}}+\frac{1}{\sqrt{c}.\sqrt{\sqrt{ab}}}\right)\)
\(\left(\frac{1}{\sqrt{a}.\sqrt{\sqrt{bc}}}+\frac{1}{\sqrt{b}.\sqrt{\sqrt{ac}}}+\frac{1}{\sqrt{c}.\sqrt{\sqrt{ab}}}\right)^2\)
\(\le\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{ab}}\right)\)(2)
\(\left(\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{ab}}\right)^2\)
\(\le\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)\(=36^2\)
\(\Rightarrow\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{ab}}\le36\)(3)
từ 1 , 2 , 3
\(\Rightarrow M\le\frac{1}{2}.\sqrt{36^2}=18\)
dấu = xảy ra khi .............
a) Dùng (a+b)2≥4ab
Chia hai vế cho a+b ( vì ab khác 0)
Ta có a+b≥\(\frac{4ab}{a+b}\) (Chuyển ab sang a+b) ta có
\(\frac{a+b}{ab}\)≥\(\frac{4}{a+b}\) <=> \(\frac{1}{a}\)+\(\frac{1}{b}\)≥\(\frac{4}{a+b}\)
Áp dụng BĐT sau: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Rightarrow\frac{1}{2a+b+c}\le\frac{1}{4}\left(\frac{1}{2a}+\frac{1}{b+c}\right)\). Lại có \(\frac{1}{b+c}\le\frac{1}{4b}+\frac{1}{4c}\)
\(\Rightarrow\frac{1}{2a+b+c}\le\frac{1}{4}\left(\frac{1}{2a}+\frac{1}{4b}+\frac{1}{4c}\right)\)
Tương tự: \(\frac{1}{a+2b+c}\le\frac{1}{4}\left(\frac{1}{4a}+\frac{1}{2b}+\frac{1}{4c}\right);\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{4a}+\frac{1}{4b}+\frac{1}{2c}\right)\)
Cộng 3 BĐT trên theo vế, ta được:
\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Thay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\)\(\Rightarrow\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)(đpcm).
Dấu "=" xảy ra <=> \(a=b=c=\frac{3}{4}.\)
\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(VT\ge\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}=\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\left(\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{1}{a+b}+\frac{1}{c+a}\right)\)
\(VT\ge\frac{4}{a+2b+c}+\frac{4}{a+b+2c}+\frac{4}{2a+b+c}\)
Dấu "=" xảy ra khi \(a=b=c\)
2a+b+c=a+b+a+c sau đó nhân tử vs 4 rồi áp dụng bđt phụ 4/a+b=<1/a+1/b ( áp dụng 2 lần là ra)