Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1.3/2^2.2.4/3^2.3.5/4^2...99.101/100.100
A=(1.2.3...99/2.3.4...100).(3.4.5...101/2.3.4...100)
A=1/100.101/2
A=101/200
200.A=200.101/200
200.A=101
phan h cac so tren ra roi nhan lai la dc xin loi nha may binh bi liet nen ko giai dc
\(P=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.....\frac{10000}{9999}=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{100.100}{99.101}\)
\(=\frac{\left(2.3....100\right).\left(2.3.4...100\right)}{\left(1.2.3.4...99\right).\left(3.4.....101\right)}=\frac{100.2}{101}=\frac{200}{101}\)
Ta có :
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)
\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99\)\(\left(1\right)\)
gọi B là biểu thức trong ngoặc
Lại có :
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B< 1-\frac{1}{100}< 1\)
\(\Rightarrow A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(1-\frac{1}{100}\right)>98\)
\(\Rightarrow A>98\)\(\left(2\right)\)
từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(98< A< 99\)
vậy A không phải là số tự nhiên
phần bạn đánh dấu (1) thì A<99 vì A= 99 trừ đi một số mà
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}=\frac{3.8.15...9999}{4.9.16...10000}=\frac{1.3.2.4.3.5...99.101}{2.2.3.3.4.4...100.100}=\frac{\left(1.2.3...99\right)\left(3.4.5...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)
\(\frac{1.101}{100.2}=\frac{101}{200}\)
\(\frac{3}{4}\)*\(\frac{8}{9}\)*\(\frac{15}{16}\)********\(\frac{9999}{10000}\)
= \(\frac{1\cdot3}{2^2}\)*\(\frac{2\cdot4}{3^2}\)********\(\frac{99\cdot101}{100^2}\)
= \(\frac{1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\)* \(\frac{3\cdot4\cdot5\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot100}\)
= \(\frac{1}{100}\)*\(\frac{101}{2}\)=\(\frac{101}{200}\)
Ta có: A = \(\frac{3}{8}\). \(\frac{8}{9}\).\(\frac{15}{16}\). ... .\(\frac{9999}{10000}\)
\(\Rightarrow\) A = \(\frac{1.3}{2^2}\).\(\frac{2.4}{3^2}\). \(\frac{3.5}{4^2}\). ... . \(\frac{99.101}{100^2}\)
\(\Rightarrow\) A = \(\frac{1.111}{2.100}\)= \(\frac{111}{200}\)
Vậy: A = \(\frac{111}{200}\).