\(A=\dfrac{x^2+2x-3}{\left(x-1\right)\left(x+1\right)}\)

a) Vs giá trị nào củ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2016

lop 7 lam gi co nghiem voi da thuc ha ban

18 tháng 12 2016

Đề thi HSG lớp 7 đó bạn

26 tháng 3 2020

\(A=2x^2\left(x-3\right)-x\left(x-3\right)\)

\(=\left(x-3\right)\left(2x^2-x\right)\)

\(=\left(x-3\right)x\left(2x-1\right)\)

Ta có:\(\left|x\right|=4\Rightarrow x=4\left(h\right)x=-4\)

Nếu x=4 thì \(A=\left(4-3\right)4\left(2\cdot4-1\right)=28\)

Nếu \(x=-4\) thì \(A=\left(-4-3\right)\left(-4\right)\left[2\left(-4\right)-1\right]=-252\)

26 tháng 3 2020

Để \(A=0\) thì \(\left(x-3\right)x\left(2x-1\right)=0\)

\(\Leftrightarrow x-3=0\left(h\right)x=0\left(h\right)2x-1=0\)

\(\Leftrightarrow x=3\left(h\right)x=0\left(h\right)x=\frac{1}{2}\)

Mọi x>3 thì ta luôn có:\(x-3>0;x>0;2x-1>2\cdot3-1=5>0\)

\(\Rightarrow A=\left(x-3\right)x\left(2x-1\right)>0\Rightarrowđpcm\)

5 tháng 11 2017

2.

a) Vì \(\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|-4\ge-4\forall x\in R\\ \Rightarrow A\ge-4\forall x\in R\)

Vậy GTNN của A là -4 đạt được khi \(x=-\dfrac{1}{2}\)

5 tháng 11 2017

Mai mk phải nộp rồi ! Các bn ơi giúp mk với! Help Me ! Thank you !

25 tháng 5 2018

a) Ta có : 

\(A=\frac{3.\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3.\left(x-1\right)^2+3.2+6}{\left(x-1\right)^2+2}=\frac{3.\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)

Để A có giá trị nguyên \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)\(\in\)\(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)\(\in\)\(\Leftrightarrow\)( x - 1 )2 + 2 \(\in\)Ư ( 6 )

\(\Rightarrow\)( x - 1 )2 + 2 \(\in\){ 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }

Lập bảng ta có :

(x-1)2+21-12-23-36-6
xloạiloại0loại\(\orbr{\begin{cases}2\\0\end{cases}}\)loại\(\orbr{\begin{cases}3\\-1\end{cases}}\)loại

Vậy x = { 0 ; 2 ; 3 ; -1 }

b) để A có giá trị lớn nhất \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)( x - 1 )2 +2 có GTNN

Mà ( x - 1 )2 \(\ge\)\(\Rightarrow\)( x - 1 )2 + 2 \(\ge\)\(\Rightarrow\)GTNN của ( x - 1 )2 + 2 là 2 \(\Leftrightarrow\)x = 1

Vậy A có GTLN là : \(\frac{3.\left(1-1\right)^2+12}{\left(1-1\right)^2+2}=\frac{12}{2}=6\)\(\Leftrightarrow\)x = 1

9 tháng 7 2018

a, \(A=\frac{3\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)

Để \(A\in Z\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Mà \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\)

\(\Rightarrow\left(x-1\right)^2+2\in\left\{2;3;6\right\}\)

Ta có bảng:

(x - 1)2 + 2236
x123

Vậy...

b, Theo câu a ta có: \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{1}{\left(x-1\right)^2+2}\le\frac{1}{2}\Rightarrow\frac{6}{\left(x-1\right)^2+2}\le\frac{6}{2}=3\)

Dấu "=" xảy ra  khi x - 1 = 0 <=> x = 1

Vậy GTLN của A = 3 khi x = 1

10 tháng 7 2018

sr câu b mình lm thiếu

Theo câu a ....

=> \(A\le3+3=6\)

Dấu "=" xảy ra khi x=1

Vậy GTLN của A = 6 khi x=1

Bài 1:Tìm giá trị của các biểu thức sau:a) B=2|x| - 3|y| với \(x=\frac{1}{2},y=-3\)b| C=2|x-2| - 3|1-x| với x=4Bài 2:Rút gọn các biểu thức sau:a) |a|+a                       b) |a|-a               c)|a|.a                     d) |a|:a                      e)3(x-1)-2|x+3|Bài 3:a)Tìm x biết: |2x+3|=x+2b)Tìm giá trị nhỏ nhất của  A=|x-2006|+|2007-x|  khi x thay đổiBài 4:Tìm x...
Đọc tiếp

Bài 1:Tìm giá trị của các biểu thức sau:

a) B=2|x| - 3|y| với \(x=\frac{1}{2},y=-3\)

b| C=2|x-2| - 3|1-x| với x=4

Bài 2:Rút gọn các biểu thức sau:

a) |a|+a                       b) |a|-a               c)|a|.a                     d) |a|:a                      e)3(x-1)-2|x+3|

Bài 3:

a)Tìm x biết: |2x+3|=x+2

b)Tìm giá trị nhỏ nhất của  A=|x-2006|+|2007-x|  khi x thay đổi

Bài 4:Tìm x biết:

a) \(\text{|}x-\frac{1}{3}\text{|}+\frac{4}{5}=\text{|}\left(-3,2\right)+\frac{2}{5}\text{|}\)

b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Bài 5: Cho

\(A=\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2\)

\(B=\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}\)

a)Rút gọn A và B

b)Tìm x \(\in\)Z để A<x<B

Bài 6:Tìm giá trị nhỏ nhất của biểu thức

M= |x-2002|+|x-2001|

Bài 7:Tìm x và y biết:

a) 2|2x-3|=\(\frac{1}{2}\)

b) 7,5-3|5-2x|= -4,5

c) |3x-4|+|5y+5|=0

d) |x-7|+2x+5=6

Bài 8:Tìm giá trị nhỏ nhất của biểu thức

a) A=3,7+|4,3-x|

b) B= |3x+8,4|-24,2

c) C= |4x-3|+|5y+7,5|+17,5

Bài 9:Tìm giá trị lớn nhất của biểu thức

a) D=5,5-|2x-1,5|

b) E= -|10,2-3x|-14

c) F=4-|5x-2|-|3y+12|

1
19 tháng 3 2018

Bài 1 và 2 dễ rồi bạn tự làm được 

Bài 3 : 

\(a)\) Ta có : 

\(\left|2x+3\right|\ge0\)

Mà \(\left|2x+3\right|=x+2\)

\(\Rightarrow\)\(x+2\ge0\)

\(\Rightarrow\)\(x\ge-2\)

Trường hợp 1 : 

\(2x+3=x+2\)

\(\Leftrightarrow\)\(2x-x=2-3\)

\(\Leftrightarrow\)\(x=-1\) ( thoã mãn ) 

Trường hợp 2 : 

\(2x+3=-x-2\)

\(\Leftrightarrow\)\(2x+x=-2-3\)

\(\Leftrightarrow\)\(3x=-5\)

\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn ) 

Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)

Chúc bạn học tốt ~