Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=\frac{2n+3}{n}=2.\frac{n+3}{n}=2.\frac{n}{n}+\frac{3}{n}=2.\frac{3}{n}\)
=>để A là phân số thì n \(\notinƯ_3=\left[1;-1;3;-3\right]\)=>n là tất cả các số khác 1;-1;2;-2
để A là là số nguyên thì n thuộc {1;-1;2;-2}
\(A=\frac{2n+3}{n}=2+\frac{3}{n}\)
a) Để A là phân số thì \(\frac{3}{n}\)cũng là phân số, nghĩa là n khác không và n không là ước của 3.
Vậy n là số nguyên khác \(0;1;-1;3;-3\)thì A là phân số.
b) Để A là số nguyên thì \(\frac{3}{n}\)cũng là số nguyên, nghĩa là n khác không và n là ước của 3.
Vậy n = \(1;-1;3;-3\)thì A là số nguyên.
a,\(\frac{2n+3}{n}=\frac{2n}{n}+\frac{3}{n}\)\(=2+\frac{3}{n}\)
A là phân số \(\Leftrightarrow\frac{3}{n}\)không chia hết cho n
\(\Leftrightarrow\)3 không chia hết cho n
\(\Leftrightarrow\)n \(\notin\)Ư(3)
\(\Leftrightarrow\)n \(\notin\) {1;-1;3;-3}
Vậy A có giá trị phân số <=> n \(\notin\){1;-1;3;-3}
b, Theo câu a ta có:
\(A=2+\frac{3}{n}\)
A là số nguyên <=> \(2+\frac{3}{n}\) là số nguyên
<=> \(\frac{3}{n}\) là số nguyên
<=> \(3⋮n\)
<=> n \(\in\) Ư(3)
<=> n \(\in\) {1;-1;3;-3}
Vậy A là số nguyên <=> n \(\in\) {1;-1;3;-3}
b, A = 2n+3/n
=>1/2.A = 2n+3/2n = 2n/2n + 3/2n = 1 + 3/2n
=> 2n E Ư(3)
Mà 2n chẵn , 3 chỉ có ước lẻ
=> Ko có giá trị n nào phù hợp để A là số nguyên
a, Từ phần b =>
n thuộc Z để A là p/s
a)Với mọi giá trị của \(n\in Z\) khác 0 thì A là phân số
b)\(A=2+\frac{3}{n}\)
Để A là số nguyên thì 3 chia hết cho n. Hay n thuộc Ư(3)
Tự giải............
a) Có 2n : n
Vậy 3 : n
Vậy n phải khác 3
b)Có 2n : n
=> 3 : n thuộc { 3, -3 }
Vậy n thuộc { 3,-3 }
MK ko biết kí hiệu thông cảm nha :)))
# USAS - 12 #
A = \(\frac{2n+2}{2n}\) = \(\frac{2n}{2n}\) + \(\frac{2}{2n}\) = \(\frac{1}{n}\) + 1
Để A là phân số thì n phải khác 0.
Để A là số nguyên thì n phải là ước của 1
Suy ra n = 1 hoặc n = -1
Câu trả hay sẽ được cộng 2 điểm hỏi đáp nhớ giữ lời nhé!!!
Để \(\frac{63}{3n+1}\) rút gọn được thì 63 và 3n + 1 phải có ước chung.
Có \(63=3^2.7\)nên 3n + 1 sẽ có ước là 3 hoặc 7.
Bởi vì 3n + 1 không thể chia hết cho 3 với n là số tự nhiên nên 3n + 1 sẽ có ước là 7.
Như vậy : \(3n+1=7k\left(k\in Z\right)\)
\(\Leftrightarrow3n=7k-1\)
\(\Leftrightarrow n=\frac{7k-1}{3}\)
\(\Leftrightarrow n=\frac{6k+k-1}{3}\)
\(\Leftrightarrow n=2k+\frac{k-1}{3}\)
Vậy để n là số tự nhiên thì \(\frac{k-1}{3}\in N\) hay \(k=3a+1\). Thay vào biểu thức n ta có:
\(n=\frac{7k-1}{3}=\frac{7\left(3a+1\right)-1}{3}=7a+2.\)
Vậy n = 7a + 2 thì thỏa mãn đề bài.
a) Để A là số nguyên thì
3n+1 | 1 | -1 | 3 | -3 | 5 | -5 | 9 | -9 | 15 | -15 | 45 | -45 |
n | 0 | -2/3 | 2/3 | -4/3 | 4/3 | -2 | 8/3 | -10/3 | 14/3 | -16/3 | 44/3 | -46/3 |
Để a rút gọn được thì 3n+1 khác 0 hay n khác -1/3
a, n khác 0
b, \(A=\dfrac{2n+3}{n}=2+\dfrac{3}{n}\Rightarrow n\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
a, để \(A=\dfrac{2n+3}{n}\) là p/s \(\Rightarrow n\ne0\)
b,\(\dfrac{2n+3}{n}=\dfrac{2n}{n}+\dfrac{3}{n}=2+\dfrac{3}{n}\)
để \(2+\dfrac{3}{n}\) là số nguyên \(\Leftrightarrow\dfrac{3}{n}\) là số nguyên
\(\Rightarrow n\in\text{Ư}\left(3\right)=\left\{\pm1;\pm3\right\}\)
vậy.......