Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20A=20/1.21+20/2.22+...+20/80.100
=1-1/21+1/2-1/22+...+1/80-1/100
=(1+1/2+...+1/80)-(1/21+1/22+...+1/100)
80B=80/1.81+80/2.82+...+8/20.100
=1-1/81+1/2-1/82+...+1/20-1/100
=(1+1/2+...+1/20)-(1/81+1/82+...+1/100)
=(1+1/2+1/3+...+1/20+1/21+1/22+...+1/80)-(1/21+1/22+...1/80+1/81+1/82+...1/100)
=>20A=80B
=>A=4B
ta có: \(A=\frac{1}{1.21}+\frac{1}{2.22}+\frac{1}{3.23}+...+\frac{1}{80.100}\)
\(20A=\frac{20}{1.21}+\frac{20}{2.22}+\frac{20}{2.23}+...+\frac{20}{80.100}\)
\(20A=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+\frac{1}{3}-\frac{1}{23}+...+\frac{1}{80}-\frac{1}{100}\)
\(20A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{80}-\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{100}\right)\)
\(20A=1+\frac{1}{2}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+\frac{1}{83}+...+\frac{1}{100}\right)\)
lại có: \(B=\frac{1}{1.81}+\frac{1}{2.82}+\frac{1}{3.83}+...+\frac{1}{20.100}\)
\(80B=\frac{80}{1.81}+\frac{80}{2.82}+\frac{80}{3.83}+...+\frac{80}{20.100}\)
\(80B=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}+\frac{1}{3}-\frac{1}{83}+...+\frac{1}{20}-\frac{1}{100}\)
\(80B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+\frac{1}{83}+...+\frac{1}{100}\right)\)
Vậy 20A = 80B
=> \(\frac{A}{B}=\frac{80}{20}=4\)
\(A=\frac{1}{1.21}+\frac{1}{2.22}+\frac{1}{3.23}+...+\frac{1}{80.100}\)
\(20A=\frac{20}{1.21}+\frac{20}{2.22}+\frac{20}{3.23}+...+\frac{20}{80.100}\)
\(20A=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+\frac{1}{3}-\frac{1}{23}+...+\frac{1}{80}-\frac{1}{100}\)
\(20A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{80}-\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{100}\right)\)
\(20A=1+\frac{1}{2}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)(1)
Lại có :
\(B=\frac{1}{1.81}+\frac{1}{2.82}+\frac{1}{3.83}+...+\frac{1}{20.100}\)
\(\Rightarrow80B=\frac{80}{1.81}+\frac{80}{2.82}+...+\frac{80}{20.100}\)
\(80B=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}+...+\frac{1}{20}-\frac{1}{100}\)
\(80B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)(2)
Từ (1) và (2) , suy ra : \(20A=80B\)
\(\Rightarrow\frac{A}{B}=\frac{80}{20}=4\)
Câu 2:
\(20A=\frac{20}{1.21}+\frac{20}{2.22}+\frac{20}{3.23}+...+\frac{20}{80.100}\)
\(20A=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+\frac{1}{3}-\frac{1}{23}+...+\frac{1}{80}-\frac{1}{100}\)
\(20A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{80}-\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{100}\right)\)
\(20A=1+\frac{1}{2}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\) (1)
Lại có:
\(B=\frac{1}{1.81}+\frac{1}{2.82}+...+\frac{1}{20.100}\)
\(\Rightarrow80B=\frac{80}{1.81}+\frac{80}{2.82}+...+\frac{80}{20.100}\)
\(80B=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}+...+\frac{1}{20}-\frac{1}{100}\)
\(80B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)(2)
Từ (1) và (2) suy ra \(20A=80B\)
\(\Rightarrow\frac{A}{B}=\frac{80}{20}=4\)
Câu 1:
\(\frac{x}{16}-\frac{1}{y}=\frac{1}{32}\)
\(\Leftrightarrow\frac{xy-16}{16y}=\frac{1}{32}\)
\(\Leftrightarrow\frac{xy-16}{y}=\frac{1}{2}\)
\(\Leftrightarrow2xy-32=y\)
\(\Leftrightarrow\left(2x-1\right).y=32\)
Tới đây ta nhận xét do \(2x-1\) luôn lẻ với mọi x nguyên nên \(2x-1\) là ước lẻ của 32
\(\Rightarrow2x-1=\left\{1;-1\right\}\)
Vậy: \(\left\{{}\begin{matrix}2x-1=1\\y=32\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=32\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x-1=-1\\y=-32\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-32\end{matrix}\right.\)
Có 2 cặp số nguyên thỏa mãn là \(\left(x;y\right)=\left(1;32\right);\left(0;-32\right)\)
Cho A = 1/2 .3/4.5/6.....199/200.Chứng tỏ rằng B mũ 2 <1/201.Bạn có làm dược ko ?
Bài 1:
a: \(A=\dfrac{1\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}{2\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}\cdot\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}+\dfrac{6}{7}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{7}+\dfrac{6}{7}=\dfrac{1}{7}+\dfrac{6}{7}=1\)
b: \(B=2000:\left[\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}\cdot\dfrac{-\dfrac{7}{6}+\dfrac{7}{8}-\dfrac{7}{10}}{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}\right]\)
\(=2000:\left[\dfrac{2}{7}\cdot\dfrac{-7}{2}\right]=-2000\)
c: \(C=10101\cdot\left(\dfrac{5}{111111}+\dfrac{1}{111111}-\dfrac{4}{111111}\right)\)
\(=10101\cdot\dfrac{2}{111111}=\dfrac{2}{11}\)
a: \(A=\left(\dfrac{-3}{4}+\dfrac{-2}{9}-\dfrac{1}{36}\right)+\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{3}{5}\right)+\dfrac{1}{57}\)
\(=\dfrac{-27-8-1}{36}+\dfrac{5+1+9}{15}+\dfrac{1}{57}\)
=1/57
b: \(B=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}-\dfrac{5}{7}-\dfrac{3}{35}\right)+\dfrac{1}{41}\)
\(=\dfrac{3+1+2}{6}+\dfrac{-7-25-3}{35}+\dfrac{1}{41}\)
=1/41
c: \(C=\left(\dfrac{-1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{2}{7}+\dfrac{4}{35}\right)+\dfrac{1}{107}\)
=1-1+1/107
=1/107
A=20/1.21+20/2.22+...+20/80.100
=1-1/21+1/2-1/22+...+1/80-1/100
=(1+1/2+...+1/80)-(1/21+1/22+...+1/100)
80B=80/1.81+80/2.82+...+8/20.100
=1-1/81+1/2-1/82+...+1/20-1/100
=(1+1/2+...+1/20)-(1/81+1/82+...+1/100)
=(1+1/2+1/3+...+1/20+1/21+1/22+...+1/80)-(1/21+1/22+...1/80+1/81+1/82+...1/100)
=>20A=80B
=>A=4B