Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức :
\(\dfrac{a}{b}< \dfrac{a+m}{b+m}\)
Ta có :
\(A=\dfrac{10^{101}-1}{10^{102}-1}< \dfrac{10^{101}-1+11}{10^{102}-1+11}=\dfrac{10^{101}+10}{10^{102}+10}=\dfrac{10\left(10^{100}+1\right)}{10\left(10^{101}+1\right)}=\dfrac{10^{100}+1}{10^{101}+1}=B\)
\(\Leftrightarrow A< B\)
Ta có:
\(1-A=1-\dfrac{10^{101}-1}{10^{102}-1}=\dfrac{10^{102}-1\left(10^{101}-1\right)}{10^{102}-1}\) \(=\dfrac{10^{102}-1-10^{101}+1}{10^{102}-2}=\dfrac{10^{102}-10^{101}}{10^{102}-1}\)
\(=\dfrac{10^{101}\left(10-1\right)}{10^{101}\left(10-\dfrac{1}{10^{101}}\right)}=\dfrac{10-1}{10-\dfrac{1}{10^{101}}}=\dfrac{9}{10-\dfrac{1}{10^{101}}}\)\(\left(1\right)\)
\(1-B=1-\dfrac{10^{100}+1}{10^{101}+1}=\dfrac{10^{101}+1-\left(10^{100}+1\right)}{10^{101}+1}\)
\(=\dfrac{10^{101}+1-10^{100}-1}{10^{101}+1}\) \(=\dfrac{10^{101}-10^{100}}{10^{101}+1}=\dfrac{10^{100}\left(10-1\right)}{10^{100}\left(10+\dfrac{1}{10^{100}}\right)}\)
\(=\dfrac{10-1}{10+\dfrac{1}{10^{100}}}=\dfrac{9}{10+\dfrac{1}{100}}\)\(\left(2\right)\)
\(Từ\left(1\right);\left(2\right)\) \(=>A< B\)\(\left(đpcm\right)\)
CHÚC BẠN HỌC TỐT
\(A=\dfrac{10^{99}+1}{10^{100}+1}\)
\(\Leftrightarrow10A=\dfrac{10\left(10^{99}+1\right)}{10^{100}+1}\)
\(\Leftrightarrow10A=\dfrac{10^{100}+10}{10^{100}+1}=\dfrac{10^{100}+1+9}{10^{100}+1}=1+\dfrac{9}{10^{100}+1}\)
\(B=\dfrac{10^{100}+1}{10^{101}+1}\)
\(\Leftrightarrow10B=\dfrac{10\left(10^{100}+1\right)}{10^{101}+1}\)
\(\Leftrightarrow10B=\dfrac{10^{101}+10}{10^{101}+1}=\dfrac{10^{101}+1+9}{10^{101}+1}=1+\dfrac{9}{10^{101}+1}\)
Do \(\dfrac{9}{10^{100}+1}>\dfrac{9}{10^{101}+1}\) nên \(10A>10B\)
\(\Rightarrow A>B\)
Áp dụng tính chất:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{10^{100}+1}{10^{101}+1}< 1\)
\(B< \dfrac{10^{100}+1+9}{10^{101}+1+9}\)
\(B< \dfrac{10^{100}+10}{10^{101}+10}\)
\(B< \dfrac{10\left(10^{99}+1\right)}{10\left(10^{100}+1\right)}\)
\(B< \dfrac{10^{99}+1}{10^{100}+1}=A\)
\(B< A\)
Bài 4:
Ta có:
\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{8}=\dfrac{2a}{4}=\dfrac{2b}{12}=\dfrac{2a+2b+c}{24}\)
\(\Leftrightarrow2a+2b+c=\dfrac{24b}{6}=4b\) (1)
Áp dụng thêm một lần, ta có:
\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{8}=\dfrac{2a}{4}=\dfrac{2a-b+c}{6}\)
\(\Leftrightarrow2a-b+c=\dfrac{6b}{6}=b\) (2)
Từ (1) và (2), ta có:
\(\dfrac{2a+2b+c}{2a-b+c}=\dfrac{4b}{b}=4\)
Vậy ...
Câu 1 :
\(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b}{ab}-\dfrac{a}{ab}=\dfrac{\left(b-a\right)}{ab}=\dfrac{1}{a-b}\)
Từ đó suy ra : (b-a)(a-b)=ab <=> \(-a^2-b^2+2ab=-\left(a-b\right)^2\)=ab
Mà a,b là số dương nên ab >0 , \(\left(a-b\right)^2>0\) nên \(-\left(a-b\right)^2< 0\)
( không thỏa mãn)
Vậy không có bất kì a,b nguyên dương nào mà \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)
Ta có: \(A=\dfrac{1}{101^2}+\dfrac{1}{102^2}+\dfrac{1}{103^2}+\dfrac{1}{104^2}+\dfrac{1}{105^2}\)
\(A>\dfrac{1}{100.101}+\dfrac{1}{101.102}+\dfrac{1}{102.103}+\dfrac{1}{103.104}+\dfrac{1}{104.105}\)\(A>\dfrac{1}{100}-\dfrac{1}{101}+\dfrac{1}{101}-\dfrac{1}{102}+\dfrac{1}{102}-\dfrac{1}{103}+\dfrac{1}{103}-\dfrac{1}{104}+\dfrac{1}{104}-\dfrac{1}{105}\)\(A>\dfrac{1}{100}-\dfrac{1}{105}\)
\(A>\dfrac{1}{2100}\)
Mà \(B=\dfrac{1}{2^2.3.5^2.7}\)=\(\dfrac{1}{2100}\)
=> \(A>B\)
Vậy \(A>B\)
Áp dụng tính chất \(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ta có :
\(B=\dfrac{10^{99}+1}{10^{89}+1}>\dfrac{10^{99}+1+9}{10^{89}+1+9}=\dfrac{10^{99}+10}{10^{98}+10}=\dfrac{10\left(10^{98}+1\right)}{10\left(10^{88}+1\right)}=\dfrac{10^{98}+1}{10^{88}+1}=A\)
\(\Leftrightarrow B>A\)
Ta áp dụng tính chất :
\(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ta có:
\(B=\dfrac{10^{99}+1}{10^{89}+1}>\dfrac{10^{99}+1+9}{10^{89}+1+9}=\dfrac{10^{99}+10}{10^{89}+10}=\dfrac{10\left(10^{98}+1\right)}{10\left(10^{88}+1\right)}=\dfrac{10^{98}+1}{10^{88}+1}=A\)
\(\Leftrightarrow B>A\)
Chúc bạn học tốt!
Áp dụng bất đẳng thức :
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\left(a;b;m\in N;b\ne0\right)\)
Ta có : \(B=\dfrac{10^{2007}+1}{10^{2008}+1}< 1\)
\(\Leftrightarrow B=\dfrac{10^{2007}+1}{10^{2008}+1}< \dfrac{10^{2007}+1+9}{10^{2008}+1+9}=\dfrac{10^{2007}+10}{10^{2008}+10}=\dfrac{10\left(10^{2006}+1\right)}{10\left(10^{2007}+1\right)}=\dfrac{10^{2006}+1}{10^{2007}+1}=A\)
\(\Leftrightarrow B< A\)
10a=10^2017+10/10^2017+1
10b=10^2018+10/10^2018+1
cậu tự so sánh nhé vậy là dễ rồi
Ta có: \(A=\dfrac{10^{2016}+1}{10^{2017}+1}\Rightarrow10A=\dfrac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\dfrac{10^{2017}+10}{10^{2017}+1}\)
\(=\dfrac{10^{2017}+1+9}{10^{2017}+1}=\dfrac{10^{2017}+1}{10^{2017}+1}+\dfrac{9}{10^{2017}+1}=1+\dfrac{9}{10^{2017}+1}\)
Tương tự ta cũng có: \(10B=1+\dfrac{9}{10^{2018}+1}\)
Lại có: \(10^{2017}< 10^{2018}\Rightarrow10^{2017}+1< 10^{2018}+1\)
\(\Rightarrow\dfrac{1}{10^{2017}+1}>\dfrac{1}{10^{2018}+1}\Rightarrow\dfrac{9}{10^{2017}+1}>\dfrac{9}{10^{2018}+1}\)
\(\Rightarrow1+\dfrac{9}{10^{2017}+1}>1+\dfrac{9}{10^{2018}+1}\Rightarrow10A>10B\Rightarrow A>B\)
Ta có:
10A=10^102-10/10^102-1
10A=1-9/10^102-1
10B=10^101+10/10^101+1
10B=1+9/10^101+1
suy ra 10B>10A
Vậy B>A