Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\overline{abc}=100a+10b+c=98a+2a+7b+3b+c\)
\(=\left(98a+7b\right)+\left(2a+3b+c\right)=7\left(14a+b\right)+\left(2a+3b+c\right)\)
Lại có: \(7\left(14a+b\right)⋮7\Rightarrow\left(2a+3b+c\right)⋮7\left(đpcm\right)\)
Ví dụ: abc+ ( 2a+3b+c) chia hết cho 7, ta có:
abc+ ( 2a+3b+c)= a.100+b.10+c+2a+3b+c
= a.98+7.b
Vì a.98 chia hết cho 7 ;98 chia hết cho 7 , 7.b chia hết cho 7 => a.98+7.b chia hết cho 7
Suy ra: abc+ ( 2a+3b+c) chia hết cho 7
Mà theo đầu bài abc chia hết cho 7 => 2a+3b+c chia hết cho 7 .
Ta có: \(\overline{abc}⋮7\)
\(=>100a+10b+c⋮7\)
\(=>98a+2a+7b+3b+c⋮7\)
Mà: \(98a⋮7\)
\(7b⋮7\)
\(=>2a+3b+c⋮7\)
abc chia hết cho 7=> 100a + 10b + c chia hết cho 7 (1)
Mà 98a chia hết cho 7; 7b chia hết cho 7
=>98a + 7b chia hết cho 7 (2)
Từ (1) và (2) => 100a + 10b + c-98a - 7b chia hết cho 7
=>2a + 3b + c chia hết cho 7
Ta có: abc = 100a + 10b + c
= 98a + 2a + 7b + 3b + c
=( 98a + 7b ) + ( 2a + 3b + c )
Mà abc chi hết cho 7 => ( 98a + 7b ) + ( 2a + 3b +c ) chia hết cho 7
Mà 98a + 7b chia hết cho 7
Nên 2a + 3b +c chi hết cho 7
Giả sử: abc + ( 2a + 3b + c ) chia hết cho 7, ta có:
abc + ( 2a + 3b + c ) = a.100 + b.10 + c + 2a + 3b + c
= a.98 + 7.b
Vì a.98 chia hết cho 7 ( 98 chia hết cho 7 ) , 7.b chia hết cho 7 => a.98 + 7.b chia hết cho 7.
=> abc + ( 2a + 3b + c ) chia hết cho 7
Mà theo đề bài abc chia hết cho 7 => 2a + 3b + c chia hết cho 7.
abc = 100a + 10b + c = 98a + 2a + 7b + 3b + c = (98a + 7b) + (2a + 3b + c) = 7(14a + b) + (2a + b + c) chia hết cho 7
Mà 7(14a + b) chia hết cho 7
=. 2a + b + c chia hết cho 7
Xét hiệu sau: \(\overline{abc}-\left(2a+3b+c\right)\)
\(=100a+10b+c-2a-3b-c\)
\(=98a+7b\)
\(=7\cdot\left(14a+b\right)\) chia hết cho 7
=> \(\overline{abc}-\left(2a+3b+c\right)\) chia hết cho 7
Mà \(\overline{abc}\) chia hết cho 7 nên \(2a+3b+c\) chia hết cho 7
=> đpcm
haha đạt toàn dâm người khác