Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Akai Haruma Nguyễn Huy Tú Lightning Farron soyeon_Tiểubàng giải Võ Đông Anh Tuấn Mysterious Person giúp mình với
\(ab=cd\)
\(\Leftrightarrow\dfrac{a}{d}=\dfrac{c}{b}\)
Đặt \(\dfrac{a}{d}=\dfrac{c}{b}=h\left(h\in N\cdot\right)\Rightarrow\left\{{}\begin{matrix}a=hd\\c=hb\end{matrix}\right.\)
\(\Rightarrow A=a^n+b^n+c^n+d^n\)
\(=\left(hd\right)^n+b^n+\left(hb\right)^n+d^n\)
\(=h^n\left(b^n+d^n\right)+\left(b^n+d^n\right)\)
\(=\left(h^n+1\right)\left(b^n+d^n\right)\) là hợp số (đpcm)
Vũ Minh Tuấn, Băng Băng 2k6, Nguyễn Thành Trương, buithianhtho, Akai Haruma, No choice teen, Bùi Thị Vân,
HISINOMA KINIMADO, Nguyễn Thanh Hằng, Nguyễn Ngô Minh Trí, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ
mn giúp em với ạ! Cảm ơn nhiều !
Thấy \(a+b+c+d=0\Rightarrow\left\{{}\begin{matrix}a=-b-c-d\\b=-a-c-d\\c=-a-b-d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ab-cd=-b^2-bc-bd-cd=\text{-(b + c) (b + d)=(a+d)(b+d)}\\bc-ad=-ca-c^2-cd-ad=\text{-(a + c) (c + d)=(b+d)(c+d)}\\ca-bd=-a^2-ab-ad-bd=\text{-(a + b) (a + d)}=\left(c+d\right)\left(a+d\right)\end{matrix}\right.\)\(\Rightarrow\)x=(a+d)(b+d)(c+d)
câu 2
Ta có: P(0)=d =>d chia hết cho 5 (1) P(1)=a+b+c+d =>a+b+c chia hết cho 5 (2) P(-1)=-a+b-c+d chia hết cho 5 Cộng (1) với (2) ta có: 2b+2d chia hết cho 5 Mà d chia hết cho 5 =>2d chia hết cho 5 =>2b chia hết cho 5 =>b chia hết cho 5 P(2)=8a+4b+2c+d chia hết cho 5 =>8a+2c chia hết cho 5 ( vì 4b+d chia hết cho 5) =>6a+2a+2c chia hết cho 5 =>6a+2(a+c) chia hết cho 5 Mà a+c chia hết cho 5 (vì a+b+c chia hết cho 5, b chia hết cho 5) =>6a chia hết cho 5 =>a chia hết cho 5 =>c chia hết cho 5 Vậy a,b,c chia hết cho 5 cho mình 1tk nhé
1b)
Đặt 2014+n2=m2(m∈Z∈Z,m>n)
<=>m2-n2=2014<=>(m+n)(m-n)=2014
Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ
Suy ra m+n và m-n đều chẵn,m+n>m-n
Mà 2014=2.19.53=>m+n và m-n không cùng chẵn
=>không có giá trị nào thoả mãn
tk mình nhé
Giả sử ƯCLN(a,c)=p(p\(\ge1\))
\(\Rightarrow a=p\times a1,c=p\times c1\)(a1,b1 là các số dương và (a1,c1)=1)
Từ đẳng thức ab=cd suy ra a1b=c1d do(a1,c1)=1 nên b\(⋮c1,d⋮a1\), ta có :
b=c1q và d=a1q(q\(\in Z^+\))
Từ đó suy ra : \(a^n+b^n+c^n+d^n=\left(a1^n+c1^n\right)\left(p^n+q^n\right)\)
do p\(\ge1,q\ge1\) nên p^n+q^n >=2 và a1,c1 là các số dương nên a^n+b^n+c^n+d^n là hợp số
Chưa hiểu lắm