K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3abc-3a^2b-3ab^2=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\) (luôn đúng vì \(a+b+c=0\))

Vậy \(a^3+b^3+c^3=3abc\)

16 tháng 10 2016

a)\(2x\left(x-2016\right)-2x+4032=0\)

\(\Leftrightarrow2x\left(x-2016\right)-2\left(x-2016\right)=0\)

\(\Leftrightarrow\left(2x-2\right)\left(x-2016\right)=0\)

\(\Leftrightarrow2\left(x-1\right)\left(x-2016\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-2016=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2016\end{array}\right.\)

b)\(5x\left(x-3\right)=x-3\)

\(\Leftrightarrow5x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\5x-1=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{1}{5}\end{array}\right.\)

c)\(\left(3x-1\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow\left(3x-1\right)^2-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(3x-1+x+2\right)\left[\left(3x-1\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(4x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}4x+1=0\\2x-3=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=\frac{3}{2}\end{array}\right.\)

 

 

 

 

 

16 tháng 10 2016

thank you very much !

16 tháng 9 2018

\(a)\)\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)

\(\Leftrightarrow\)\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}=\frac{a+b+c+d+a+b-c-d}{a-b+c-d+a-b-c+d}=\frac{2\left(a+b\right)}{2\left(a-b\right)}=\frac{a+b}{a-b}\) \(\left(1\right)\)

Lại có : 

\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}=\frac{a+b+c+d-a-b+c+d}{a-b+c-d-a+b+c-d}=\frac{2\left(c+d\right)}{2\left(c-d\right)}=\frac{c+d}{c-d}\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)\(\Leftrightarrow\)\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\) \(\left(3\right)\)

Lại có : 

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\) \(\left(4\right)\)

Từ \(\left(3\right)\) và \(\left(4\right)\) suy ra \(\frac{a}{c}=\frac{b}{d}\) ( đpcm ) 

Chúc bạn học tốt ~ 

16 tháng 9 2018

\(b)\)\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\) ( vì \(a+b+c=0\) ) 

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

Vậy ... 

Chúc bạn học tốt ~ 

2 tháng 12 2017

x2-3.(x-1)

(x-1)2

=>x2-3

x-1

19 tháng 10 2014

a) ở lop 8 đã được học hằng đẳng thức a^3+b^3+c^3 rùi. áp dụng vào bài này thì ta có 

a^3+b^3+c^3-3abc=(a^3+b^3+c^3)-3abc=(a+b+c).[a^2+b^2+c^2-(ab+ac+bc)]+3abc-3abc=(a+b+c)[a^2+b^2+c^2-(ab+ac+bc)]

19 tháng 10 2014

mai hương làm đúng rùi nhưng ở bước cuối bạn viết nhầm. là -ab chứ ko phải là -3ab

16 tháng 12 2018

mai mình nộp bài r ai đó giúp mình với huhu

16 tháng 12 2018

a) ĐKXĐ: \(4x^2-4x+1\ne0\)

Ta sẽ giải phương trình \(4x^2-4x+1=0\) để loại các nghiệm:

\(4x^2-4x+1=4\left(x^2-x-\frac{1}{4}\right)=4\left(x-\frac{1}{2}\right)^2\)

Để \(4x^2-4x+1=0\) thì \(4\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

Vậy ĐKXĐ: \(x\ne\frac{1}{2}\)

b) \(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{8\left(x-\frac{1}{2}\right)^3}{4\left(x-\frac{1}{2}\right)^2}=2x-1\)  (chịu khó ngồi phân tích cả tử và mẫu thành nhân tử giúp mình)

c) Ta có: \(P=2x-1\).Với mọi x nguyên thì \(2x\) nguyên.

Do vậy \(P=2x-1\)nguyên.

Suy ra đpcm.

Cảm ơn sư phụ đã chỉ bảo :3

Question 1 :

a )\(A=1+2+3+.......+n=\dfrac{1}{2}.n.\left(n+1\right)\)

b ) \(B=1^2+2^2+3^2+......+n^2=\dfrac{1}{6}.n\left(n+1\right)\left(2n+1\right)\)

c ) \(C=1^3+2^3+3^3+......+n^3=\dfrac{1}{4}.n^2.\left(n+1\right)^2\)

Question 2 :

a ) \(199^3-199=199\left(199^2-1\right)=199\left(199-1\right)\left(199+1\right)=198.199.200⋮200\left(đpcm\right)\)

b ) Ta có :

\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=3abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(a,b,c>0\) \(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\left(đpcm\right)\)

Wish you study well !!

Bạn nào làm được câu a , t bái bạn đó làm sư phụ :3