\(a+b+c=0\).CMR

a) \(a^3+b^3+c^3=3abc\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

a,Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath

b,Câu hỏi của Ngô Đức Duy - Toán lớp 8 - Học toán với OnlineMath

c,Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath

13 tháng 8 2017

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

13 tháng 8 2017

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng

Phân tích các đa thức sau thành nhân tử: * \(x^3-7x+6\) * \(x^3-9x^2+6x+16\) * \(x^3-6x^2-x+30\) * \(2x^3-x^2+5x+3\) * \(27x^3-27x^2+18x-4\) * \(x^2+2xy+y^2-x-y-12\) * \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\) * \(4x^4-32x^2+1\) * \(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\) * \(64x^4+y^4\) * \(a^6+a^4+a^2b^2+b^4-b^6\) * \(x^3+3xy+y^3-1\) * \(4x^4+4x^3+5x^2+2x+1\) * \(x^8+x+1\) * \(x^8+3x^4+4\) * \(3x^2+22xy+11x+37y+7y^2+10\) *...
Đọc tiếp

Phân tích các đa thức sau thành nhân tử:

* \(x^3-7x+6\)

* \(x^3-9x^2+6x+16\)

* \(x^3-6x^2-x+30\)

* \(2x^3-x^2+5x+3\)

* \(27x^3-27x^2+18x-4\)

* \(x^2+2xy+y^2-x-y-12\)

* \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

* \(4x^4-32x^2+1\)

* \(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

* \(64x^4+y^4\)

* \(a^6+a^4+a^2b^2+b^4-b^6\)

* \(x^3+3xy+y^3-1\)

* \(4x^4+4x^3+5x^2+2x+1\)

* \(x^8+x+1\)

* \(x^8+3x^4+4\)

* \(3x^2+22xy+11x+37y+7y^2+10\)

* \(x^4-8x+63\)

* \(\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)

* \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)

* \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

* \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)

* \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab^2+c^3-3abc\)

* \(\left(a+b+c\right)^3-a^3-b^3-c^3=[\left(a+b\right)c]^3-a^3-b^3-c^3\)

* \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\([\) Các bạn làm được bài nài thì làm giúp mk với nha,làm vài câu cũng được\(]\)

Mk mệt quá rồi làm giúp mk với nha

3
4 tháng 12 2017

\(1,x^3-7x+6\)

\(=x^3+3x^2-3x^2-9x+2x+6\)

\(=x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x+2\right)\)

\(=\left(x+3\right)\left(x^2-2x-x+2\right)\)

\(=\left(x+3\right)\left(x-2\right)\left(x-1\right)\)

\(2,x^3-9x^2+6x+16\)

\(=x^3+x^2-10x^2-10x+16x+16\)

\(=x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-10x+16\right)\)

\(=\left(x+1\right)\left(x^2-2x-8x+16\right)\)

\(=\left(x+1\right)\left(x-8\right)\left(x-2\right)\)

4 tháng 12 2017

mk ms lm hai câu thôi mà đã mệt r , bh mk lm bt mai đi học ,lúc khác lm đ cko bn

22 tháng 10 2016

Câu 1:

  • Chứng minh a3+b3+c3=3abc thì a+b+c=0

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow0=0\) Đúng (Đpcm)

  • Chứng minh a3+b3+c3=3abc thì a=b=c

​Áp dụng Bđt Cô si 3 số ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi a=b=c (Đpcm)

 

 

 

22 tháng 10 2016

Câu 2

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)

Ta có:

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\cdot3\cdot\frac{1}{abc}=3\)

NV
21 tháng 3 2019

a/ \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)-24\)

\(=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

b/ \(\left(x^2-2x+4\right)\left(x^2+3x+4\right)-14x^2\)

\(=x^2\left[\left(x-2+\frac{4}{x}\right)\left(x+3+\frac{4}{x}\right)-14\right]\)

\(=x^2\left[\left(x-2+\frac{4}{x}\right)^2+5\left(x-2+\frac{4}{x}\right)-14\right]\)

\(=x^2\left(x-2+\frac{4}{x}-2\right)\left(x-2+\frac{4}{x}+7\right)\)

\(=x^2\left(x-4+\frac{4}{x}\right)\left(x+5+\frac{4}{x}\right)\)

\(=\left(x^2-4x+4\right)\left(x^2+5x+4\right)\)

\(=\left(x-2\right)^2\left(x+1\right)\left(x+4\right)\)

NV
21 tháng 3 2019

c/ \(a^2b-a^2c+b^2\left(a-c\right)+c^2a-c^2b\)

\(=b\left(a^2-c^2\right)-ac\left(a-c\right)+b^2\left(a-c\right)\)

\(=\left(a-c\right)\left(ab+bc-ac+b^2\right)\)

d/ \(a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

10 tháng 10 2018

ý a bạn có chắc viết đề bài đúng không

10 tháng 10 2018

đề bài đúng mà