K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2023

Ta có :

\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{b^2}{c}\\d=\dfrac{c^2}{b}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{d}=\dfrac{b^2}{c}:\dfrac{c^2}{b}\)

\(\Rightarrow\dfrac{a}{d}=\dfrac{b^2}{c}.\dfrac{b}{c^2}\)

\(\Rightarrow\dfrac{a}{d}=\dfrac{b^3}{c^3}=\dfrac{8b^3}{8c^3}=\dfrac{a^3}{b^3}=\dfrac{125c^3}{125d^3}\)

\(\Rightarrow\dfrac{a}{d}=\dfrac{a^3+8b^3+125c^3}{b^3+8c^3+125d^3}\left(dpcm\right)\)

19 tháng 10 2019

a) \(b^2=ac\Rightarrow b.b=ac\Rightarrow\frac{b}{a}=\frac{c}{b}\Rightarrow\frac{a}{b}=\frac{b}{c}\)
    \(c^2=bd\Rightarrow c.c=bd\Rightarrow\frac{c}{b}=\frac{d}{c}\Rightarrow\frac{b}{c}=\frac{c}{d}\)
Ngoặc ''}'' 2 điều trên
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b-c}{b+c-d}\right)^3\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
Vậy ...
b) \(b^2=ac\Rightarrow b.b=ac\Rightarrow\frac{b}{a}=\frac{c}{b}\Rightarrow\frac{a}{b}=\frac{b}{c}\)
    \(c^2=bd\Rightarrow c.c=bd\Rightarrow\frac{c}{b}=\frac{d}{c}\Rightarrow\frac{b}{c}=\frac{c}{d}\)
Ngoặc ''}'' 2 điều trên
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a.b.c}{b.c.d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)(Do loại bỏ b.c trên tử + dưới mẫu nên còn a/d)
\(\Rightarrow\frac{a^3}{b^3}=\frac{8b^3}{3c^3}=\frac{125c^3}{125d^3}=\frac{a}{d}\)(Dùng tính chất phân số)
Vậy ...
P/s: Có gì khó hiểu thì hỏi nhé ^^

16 tháng 8 2017

Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{ac}{c^2}\)=\(\dfrac{bd}{d^2}\)=\(\dfrac{ac}{bd}\)=\(\dfrac{d^2}{c^2}\)=\(\dfrac{ac}{bd}\)=\(\dfrac{2d^2}{2c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ac}{bd}\)=\(\dfrac{2d^2}{2c^2}\)= \(\dfrac{2c^2-ac}{2c^2-bd}\)
=> \(\dfrac{a}{b}\)=\(\dfrac{2c^2-ac}{2c^2-bd}\)=>\(\dfrac{a^2}{b^2}\)=\(\dfrac{2c^2-ac}{2d^2-bd}\)
b) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)= \(\dfrac{ma}{mc}\)=\(\dfrac{nb}{nd}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ma}{mc}\)=\(\dfrac{nb}{nd}\)=\(\dfrac{ma+nb}{mc+nd}\)=\(\dfrac{ma-nb}{mc-nd}\)
=> \(\dfrac{ma+nb}{ma-nb}\)=\(\dfrac{mc+nd}{mc-nd}\)
c) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^3}{c^3}\)=\(\dfrac{b^3}{d^3}\)=\(\dfrac{a^3+b^3}{c^3+d^3}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a-b}{c-d}\)=\(\left(\dfrac{a-b}{c-d}\right)^3\)(2)
Từ (1) và (2) suy ra:
\(\left(\dfrac{a-b}{c-d}\right)^3\)=\(\dfrac{a^3+b^3}{c^3+d^3}\)