Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 100=102=> là số chính phương
b,100=102=> là số chính phương
c,169=132=> là số chính phương
d, 117 không phải số chính phương
e,68 không phải số chính phương
mình làm đúng 100%
nha
a, 100=102=> là số chính phương
b,100=102=> là số chính phương
c,169=132=> là số chính phương
d, 117 không phải số chính phương
e,68 không phải số chính phương
mik làm đúng, nha
Bài 1:
\(A=7+7^3+7^5+...+7^{1999}\)
\(\Rightarrow A=\left(7+7^3\right)+\left(7^5+7^7\right)+...+\left(7^{1997}+7^{1999}\right)\)
\(\Rightarrow A=\left(7+343\right)+7^4\left(7+7^3\right)+...+7^{1996}\left(7+7^3\right)\)
\(\Rightarrow A=350+7^4.350+...+7^{1996}.350\)
\(\Rightarrow A=\left(1+7^4+...+7^{1996}\right).350⋮35\)
\(\Rightarrow A⋮35\left(đpcm\right)\)
b2:
a) \(S=1+3+3^2+...+3^{49}\)
\(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)
\(\Rightarrow S=\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)
\(\Rightarrow S=4+3^2.4+...+3^{48}.4\)
\(\Rightarrow S=\left(1+3^2+...+3^{48}\right).4⋮4\)
\(\Rightarrow S⋮4\left(đpcm\right)\)
c) \(S=1+3+3^2+...+3^{49}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{50}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{50}\right)-\left(1+3+3^2+...+3^{49}\right)\)
\(\Rightarrow2S=3^{50}-1\)
\(\Rightarrow S=\frac{3^{50}-1}{2}\left(đpcm\right)\)
A = 4 + 42 + 43 + ... + 496
= ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 494 + 495 + 496 )
= 4( 1 + 4 + 42 ) + 44( 1 + 4 + 42 ) + ... + 494( 1 + 4 + 42 )
= 4.21 + 44.21 + ... + 494.21
= 21( 4 + 44 + ... + 494 ) chia hết cho 21 ( đpcm )
Câu 2:
25.20,04 + 75.20, 04 - 2004.20,03 + 2004.20,04
= 20,04(25 + 75 - 2003 + 2004)
= 20,04.101 = 2024,04
C3: A=\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{2011\cdot2013}+\frac{2}{2013\cdot2015}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=\left(\frac{1}{3}-\frac{1}{2015}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{2013}-\frac{1}{2013}\right)\)
\(=\left(\frac{2015}{6045}-\frac{3}{6045}\right)+0+...+0=\frac{2012}{6045}\)
mấy câu kia mình lười làm lắm bạn
Chúc bạn học tốt!^_^
Lời giải:
$A=1+3+3^2+(3^3+3^4+3^5+3^6)+.....+(3^{87}+3^{88}+3^{89}+3^{90}$
$=13+3^3(1+3+3^2+3^3)+....+3^{87}(1+3+3^2+3^3)$
$=13+(1+3+3^2+3^3)(3^3+....+3^{87})$
$=13+40(3^3+....+3^{87})=3+10+40(3^3+...+3^{87})$ chia $5$ dư $3$
$\Rightarrow A$ không là scp.