\(A=1+3+3^2+3^3+3^4+...+3^{90}\). Chứng minh rằng \(A\) k...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
$A=1+3+3^2+(3^3+3^4+3^5+3^6)+.....+(3^{87}+3^{88}+3^{89}+3^{90}$

$=13+3^3(1+3+3^2+3^3)+....+3^{87}(1+3+3^2+3^3)$

$=13+(1+3+3^2+3^3)(3^3+....+3^{87})$

$=13+40(3^3+....+3^{87})=3+10+40(3^3+...+3^{87})$ chia $5$ dư $3$

$\Rightarrow A$ không là scp.

a, 100=102=> là số chính phương

b,100=102=> là số chính phương

c,169=132=> là số chính phương

d, 117 không phải số chính phương

e,68 không phải số chính phương

mình làm đúng 100%

nha

a, 100=102=> là số chính phương

b,100=102=> là số chính phương

c,169=132=> là số chính phương

d, 117 không phải số chính phương

e,68 không phải số chính phương

mik làm đúng, nha

27 tháng 3 2017

giup mih vs

24 tháng 1 2017

Bài 1:

\(A=7+7^3+7^5+...+7^{1999}\)

\(\Rightarrow A=\left(7+7^3\right)+\left(7^5+7^7\right)+...+\left(7^{1997}+7^{1999}\right)\)

\(\Rightarrow A=\left(7+343\right)+7^4\left(7+7^3\right)+...+7^{1996}\left(7+7^3\right)\)

\(\Rightarrow A=350+7^4.350+...+7^{1996}.350\)

\(\Rightarrow A=\left(1+7^4+...+7^{1996}\right).350⋮35\)

\(\Rightarrow A⋮35\left(đpcm\right)\)

b2:

a) \(S=1+3+3^2+...+3^{49}\)

\(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)

\(\Rightarrow S=\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)

\(\Rightarrow S=4+3^2.4+...+3^{48}.4\)

\(\Rightarrow S=\left(1+3^2+...+3^{48}\right).4⋮4\)

\(\Rightarrow S⋮4\left(đpcm\right)\)

c) \(S=1+3+3^2+...+3^{49}\)

\(\Rightarrow3S=3+3^2+3^3+...+3^{50}\)

\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{50}\right)-\left(1+3+3^2+...+3^{49}\right)\)

\(\Rightarrow2S=3^{50}-1\)

\(\Rightarrow S=\frac{3^{50}-1}{2}\left(đpcm\right)\)

24 tháng 1 2017

Giúp mình câu b bài 2 luôn được không?

29 tháng 9 2015

trừ bạn thì có tui là ai

29 tháng 10 2020

A = 4 + 42 + 43 + ... + 496

= ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 494 + 495 + 496 )

= 4( 1 + 4 + 42 ) + 44( 1 + 4 + 42 ) + ... + 494( 1 + 4 + 42 )

= 4.21 + 44.21 + ... + 494.21

= 21( 4 + 44 + ... + 494 ) chia hết cho 21 ( đpcm )

- Giúp tớ với nhé ^^Câu 1 : So sánh 2300 và 3200Câu 2 : Tính nhanh : 25 . 20, 04 + 75 . 20, 04 - 2004 . 20,03 + 2004 . 20,04Câu 4: Chứng tỏ số B = 1 + 3 + 32 + 33 + ... + 3162 + 3163 chia hết cho 40.Câu 5 : Tìm số x , y, z biết ( x - \(\frac{1}{3}\))(y - \(\frac{1}{5}\))(z + \(\frac{1}{4}\)) = 0 biết x + 2 = y - 1 = z + 1Câu 6 : Cho \(A=\frac{4}{n-5}\)A. Tìm giá trị n để A là phân sốB. Tìm giá trị n để A có giá trị là số...
Đọc tiếp

- Giúp tớ với nhé ^^
Câu 1 : So sánh 2300 và 3200
Câu 2 : Tính nhanh : 25 . 20, 04 + 75 . 20, 04 - 2004 . 20,03 + 2004 . 20,04

Câu 4: Chứng tỏ số B = 1 + 3 + 32 + 33 + ... + 3162 + 3163 chia hết cho 40.
Câu 5 : Tìm số x , y, z biết ( x - \(\frac{1}{3}\))(y - \(\frac{1}{5}\))(z + \(\frac{1}{4}\)) = 0 biết x + 2 = y - 1 = z + 1
Câu 6 : Cho \(A=\frac{4}{n-5}\)
A. Tìm giá trị n để A là phân số
B. Tìm giá trị n để A có giá trị là số nguyên
Câu 7 : Trên đường thẳng xy lần lượt lấy các điểm theo thứ tự A , B , C, D sao cho AC = BD
A. Chứng minh rằng AB = CD
B . Gọi P, Q lần lượt là trung điểm của AB và CD. Chứng minh rằng \(PQ=\frac{AC+BD}{2}\)
p/s: Các bạn trả lời giúp tớ cách giải nhé. Cảm ơn.
Câu 3 : Tính tổng \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2011.2013}+\frac{2}{2013.2015}\)

3
29 tháng 4 2015

Câu 2:

 25.20,04 + 75.20, 04 - 2004.20,03 + 2004.20,04

= 20,04(25 + 75 - 2003 + 2004)

= 20,04.101 = 2024,04

29 tháng 4 2015

C3: A=\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{2011\cdot2013}+\frac{2}{2013\cdot2015}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)

\(=\left(\frac{1}{3}-\frac{1}{2015}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{2013}-\frac{1}{2013}\right)\)

\(=\left(\frac{2015}{6045}-\frac{3}{6045}\right)+0+...+0=\frac{2012}{6045}\)

mấy câu kia mình lười làm lắm bạn

Chúc bạn học tốt!^_^