Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ điều kiện \(3x-8y=1\Rightarrow y=\frac{3x-1}{8}\)
Thay vào biểu thức $Q$ ta có:
\(Q=x^2+y=x^2+\frac{3x-1}{8}=x^2+\frac{3}{8}x+(\frac{3}{16})^2-\frac{41}{256}\)
\(=(x+\frac{3}{16})^2-\frac{41}{256}\geq 0-\frac{41}{256}=-\frac{41}{256}\)
Vậy \(Q_{\min}=\frac{-41}{256}\Leftrightarrow x=\frac{-3}{16}; y=\frac{-17}{64}\)
1)
a) \(2x^2-12x+18+2xy-6y\)
\(=2x^2-6x-6x+18+2xy-6y\)
\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)
\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)
\(=\left(x-3\right)\left(2y+2x-6\right)\)
\(=2\left(x-3\right)\left(y+x-3\right)\)
b) \(x^2+4x-4y^2+8y\)
\(=x^2+4x-4y^2+8y+2xy-2xy\)
\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)
\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)
\(=\left(2y+x\right)\left(-2y+x+4\right)\)
2) \(5x^3-3x^2+10x-6=0\)
\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)
Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)
\(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)
\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Bài làm
a) 2x2 - 12x + 18 + 2xy - 6y
= 2x2 - 6x - 6x + 18 + 2xy - 6y
= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )
= 2x( y + x - 3 ) - 6( y + x - 3 )
= ( 2x - 6 ) ( y + x - 3 )
# Học tốt #
Lời giải:
a)
Áp dụng BĐT Cauchy-Schwarz:
\(4M=(3x^2+y^2)(3+1)\geq (3x+y)^2\)
\(\Leftrightarrow 4M\geq 1\Leftrightarrow M\geq \frac{1}{4}\)
Vậy \(M_{\min}=\frac{1}{4}\Leftrightarrow x=y=\frac{1}{4}\)
b) Với mọi \(x,y\in\mathbb{R}\Rightarrow (3x-y)^2\geq 0\)
\(\Leftrightarrow 9x^2+y^2-6xy\geq 0\Leftrightarrow (3x+y)^2-12xy\geq 0\)
\(\Leftrightarrow xy\leq \frac{(3x+y)^2}{12}=\frac{1}{12}\)
Vậy \(K_{\max}=\frac{1}{12}\Leftrightarrow x=\frac{1}{6};y=\frac{1}{2}\)
A . 5(x-y)-y(x-y)
=(x6-y)(5-y)
B . x^2 - xy - 8x+8y
=(x^2-xy)-(8x-8y))
=x(x-y) - 8(x-y)
C. x^2-10x+25 - y^2
=(x^2 - 10x + 25 ) - y^2
=(x-5)^2 - y^2
=(x-5+y)(x-5-y)
D . x^3 - 3x^2-4x+12
=(x^3 - 3x^2 ) - (4x - 12)
=x^2 (x-3)-4(x-3)
=(x^2-4)(x-3)
=(x+2)(x-2)(x-3)
D . 2x^2-2y^2- 6x-6y
=(2^x - 2y^2) - (6x+ 6y)
=2(x^2 - y^2) - 6(x+y)
=2(x+y)(x-y) - 6(x+y)
=2(x+y)(x-y-3)
E . x^3 - 3x^2 + 3x - 1
=(x-1)^3
D.x^2+3x+2
=x^2+2x+x+2
=(x^2+2x)+(x+2)
=x(x+2)+(x+2)
=(x+2)(x+1)
1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)
Dấu "=" xảy ra <=> a = 4
Vậy min A = 17/4 tại a = 4
2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)
Dấu "=" xảy ra <=> x = 2
Vậy min B = 8 tại x = 2
3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)
Dấu "=" xảy ra <=> x = 1/2 thỏa mãn
Vậy min C = 7 đạt tại x = 1/2
3/ \(x^2=2\left(y-2\right)^2-5\Rightarrow\left(\sqrt{2}y-2\sqrt{2}\right)^2-x^2=5\)
\(\Leftrightarrow\left(\sqrt{2}y-2\sqrt{2}+x\right)\left(\sqrt{2}y-2\sqrt{2}-x\right)=5\)
Lập bảng giải ra tiếp.
P/s: Cách này có vẽ không hay lắm thiết nghĩ dùng delta sẽ hay hơn nhưng để thử=)