Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do n > 3 => 2^n >= 2^4 chia hết cho 16 => 10a + b chia hết cho 16
Ta có 2^n có thể có những tân cùng là 2; 4; 6; 8
TH1 2^n có tận cùng là 2 => n = 4k+1
=> 10a + b có tận cùng là 2 => b = 2 ( do b < 10)
ta có 2^n = 10a + 2 => 2( 2^(4k) - 1) = 10a => 2^( 4k) - 1 = 5a
do 2^(4k) - 1 chia hết cho 3 => 5a chia hết cho 3 => a chia hết cho 3
=> a.b = a.2 chia hết cho 6 (1)
TH2 2^n có tận cùng là 4 => n = 4k +2
=> 2^n = 10a + b có tận cùng là 4 => b = 4( do b <10)
=> 2^(4k +2) = 10a + 4 => 4.2^(4k) - 4 = 10a
=> 4(2^4k - 1) = 10 a
ta có 2 ^4k -1chia hết cho 3 => 10a chia hết cho 3 => a chia hết cho 3
=> a.b chia hết cho 6 (2)
Th3 2^n có tận cùng là 8 => n = 4k +3
TH 3 2^n có tận cùng là 6 => n = 4k
bằng cách làm tương tự ta luôn có a.b chia hết cho 6
tick cái nha
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
Đặt A = \(\frac{1}{6}\left(10^n+a+b\right)=\frac{1}{6}\left(10^n-2020+a+1+b+2019\right)\)
Vì \(\hept{\begin{cases}a+1⋮6\\b+2019⋮6\end{cases}\Rightarrow a+1+b+2019⋮6\Rightarrow\frac{1}{6}\left(a+1+b+2019\right)\inℕ}\)(1)
Để \(A\inℕ\Rightarrow10^n-2020⋮6\)
Nhận thấy 10n = (4 + 6)n = 4 +B(6)
=> 10n chia 6 dư 4
mà 2020 chia 6 dư 4
=> 10n - 2020 \(⋮\)6
=> \(\frac{1}{6}\left(10^n-2020\right)\inℕ\)(2)
Từ (1) và (2) => A \(\inℕ\)
Nếu bạn đã từng tự rủa bản thân vì quá ngu...thì đúng là bạn ngu thật. Chỉ có loại ngu mới đi chửi chính mình.
-Triết lý anh Sơn-
2c, \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge6xyz\\
\)
Á djt mẹ nãy dùng BĐT quá k nhớ ra là còn có cả trường hợp âm không dùng BĐT được...nên xử lí luôn he? :))
Nếu trong 3 số \(x,y,z\)có 1 hoặc 3 số âm, ta có \(6xyz\le0\le x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\) (ĐPCM)
Nếu trong 3 số \(x,y,z\)có 2 số âm hoặc có 3 số dương thì xét như nhau (nói âm dương là vậy chứ thiết nhất là em ghi \("\ge0"\)và \("\le0"\)cho nó chuẩn nhất ;))
Có: \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge2x^2y+2y^2z+2z^2x\)(1) (Bất đẳng thức Cô-si)
Ta cần chứng minh: \(2x^2y+2zy^2+2xz^2\ge6xyz\)
\(\Leftrightarrow\)\(\frac{2x^2y}{xyz}+\frac{2zy^2}{xyz}+\frac{2xz^2}{xyz}=2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge6\)(2)
Đến đây có thể làm theo 2 cách, nhưng thôi anh làm cách nhanh hơn :))
Áp dụng BĐT Cauchy-Schwarz cho 2 bộ số \(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\)và \(\left(x,y,z\right)\)trong đó \(x,y,z\ge0\). Khi đó:
\(\frac{\left(\sqrt{x}\right)^2}{z}+\frac{\left(\sqrt{y}\right)^2}{x}+\frac{\left(\sqrt{z}\right)^2}{y}\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\)
Thay vào (2) ta có:\(2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge2\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge6\)(3)
Từ (1), (2) và (3) => ĐPCM
Đến đây có lẽ chú sẽ nghĩ: Dựa vào đâu mà cha này bảo \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)???
Thì câu trả lời đây: \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)\(\Leftrightarrow\)\(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\ge3\left(x+y+z\right)\)
\(\Leftrightarrow\)\(2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{zx}=\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Lời giải:
Gọi $d$ là ước chung lớn nhất của $a,b$
Khi đó, đặt \(\left\{\begin{matrix} a=dx\\ b=dy\end{matrix}\right.(x,y)=1\)
Ta có: \(ab(a+b)\vdots a^2+ab+b^2\)
\(\Leftrightarrow dxdy(dx+dy)\vdots (dx)^2+dxdy+(dy)^2\)
\(\Leftrightarrow dxy(x+y)\vdots x^2+xy+y^2\)
Do $x,y$ nguyên tố cùng nhau nên :
\((x,x^2+xy+y^2)= (y,x^2+xy+y^2)=(x+y,x^2+xy+y^2)=1\)
Suy ra \(d\vdots x^2+xy+y^2\)
\(\Rightarrow d\geq x^2+xy+y^2\)
\(\Rightarrow d^3\geq a^2+ab+b^2\)
Mà với $a,b$ nguyên dương phân biệt thì \(a^2+ab+b^2\geq 3ab>ab\)
Do đó \(d^3>ab(1)\)
Mặt khác: $a,b$ nguyên dương phân biệt kéo theo $x,y$ nguyên dương phân biệt nên \(|x-y|\geq 1\)
\(\Rightarrow |a-b|=d|x-y|\geq d(2)\)
Từ \((1);(2)\Rightarrow |a-b|^3>ab\Rightarrow |a-b|>\sqrt[3]{ab}\)
Ta có đpcm.
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
Lời giải:
Với \(n>3\Rightarrow 10a+b=2^n\vdots 2\). Mà \(10a\vdots 2\) nên suy ra \(b\vdots 2\)
Do đó \(ab\vdots 2(1)\)
----------------------------
Vì $b$ là số nguyên dương chẵn và thỏa mãn \(b< 10\Rightarrow b\in\left\{2;4;6;8\right\}\)
TH1: Nếu \(b=2\Rightarrow 2^n=10a+b=10a+2\)
Một số chính phương chia 5 chỉ có thể có dư là \(0,1,4\) mà $10a+2$ chia $5$ dư $2$ nên $n$ không thể là số chẵn.
Do đó $n$ lẻ
\(\Rightarrow 10a+2=2^n\equiv (-1)^n\equiv -1\equiv 2\pmod 3\)
\(\Rightarrow 10a\equiv 0\pmod 3\Rightarrow a\equiv 0\pmod 3\)
\(\Rightarrow ab\vdots 3\)
TH2: \(b=4\Rightarrow 2^n=10a+4\)
\(\Rightarrow 2^n-4=10a\vdots 5\) (*)
Nếu \(n\) lẻ :
\(2^n-4=2^{2k+1}-4=4^k.2-4\equiv (-1)^k.2-4\equiv -2,-6\not\equiv 0\pmod 5\)
(trái với (*))
Do đó $n$ chẵn.
\(\Rightarrow 10a+4=2^n\equiv (-1)^n\equiv 1\pmod 3\)
\(\Rightarrow 10a\equiv -3\equiv 0\pmod 3\Rightarrow a\equiv 0\pmod 3\)
Do đó \(ab\vdots 3\)
TH3: \(b=6\vdots 3\Rightarrow ab\vdots 3\)
TH4: \(b=8\Rightarrow 10a+8=2^n\)
Vì \(10a+8=5(2a+1)+3\) chia 5 dư 3 nên $10a+8$ không thể là số chính phương
Do đó \(n\) lẻ \(\Rightarrow 10a+8=2^n\equiv (-1)^n\equiv -1\pmod 3\)
\(\Rightarrow 10a\equiv -9\equiv 0\pmod 3\)
\(\Rightarrow a\equiv 0\pmod 3\Rightarrow ab\vdots 3\)
Vậy trong mọi TH thì \(ab\vdots 3(2)\)
Từ (1);(2) suy ra \(ab\vdots 6\)
Ta có đpcm.