K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

Tách M ra sẽ =x/x+x/y+y/x+y/y

=> M=1+1+x/y+y/x

x/y+y/x >= 2 (định lí cauchy)

=> M>=4.

Mà đề bài phải là tìm GTNN nhá !!!

18 tháng 2 2019

Lạnh Lùng Boy sai rồi , nếu Cô-si thì x = y mà đề bài là  x < y -> dấu "=" không xảy ra , đề tìm max là đúng, đợi ít đang nghĩ

10 tháng 8 2020

Đề là GTLN nha bạn.

GTNN thì luôn là 4 với mọi x, y >0 theo AM-GM.

23 tháng 4 2019

Do \(1\le x< y\le2\Rightarrow\hept{\begin{cases}1\le x< 2\\\frac{1}{2}\le\frac{1}{y}< 1\end{cases}}\)

=> \(\frac{1}{2}\le\frac{x}{y}< 2\)

\(A=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{x}{y}+\frac{y}{x}+2\)

Đặt \(\frac{x}{y}=t\left(\frac{1}{2}\le t< 2\right)\)

Ta có: \(A=t+\frac{1}{t}+2=\left(t-\frac{1}{2}\right)+\left(\frac{1}{t}-2\right)+\frac{9}{2}=\frac{2t-1}{2}+\frac{1-2t}{t}+\frac{9}{2}\)

\(=\frac{\left(2t-1\right)\left(t-2\right)}{2t}+\frac{9}{2}\)

Vì \(\frac{1}{2}\le t< 2\Rightarrow\hept{\begin{cases}2t-1\ge0\\t-2< 0\end{cases}\Rightarrow\left(2t-1\right)\left(t-2\right)\le0}\)và \(2t\ge2.\frac{1}{2}=1\Rightarrow\frac{1}{2t}\le1\)

=> \(A\le\frac{9}{2}\)

"=" Xảy ra <=> \(t=\frac{1}{2}\)<=> \(\hept{\begin{cases}\frac{x}{y}=\frac{1}{2}\\x=1;\frac{1}{y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

30 tháng 1 2019

Với \(2\ge x,y\ge1\)

Ta có :

\(2x\ge2\ge y;2y\ge x\)

\(\Rightarrow\left(2x-y\right)\left(2y-x\right)\ge0\Leftrightarrow\dfrac{x^2+y^2}{xy}\le\dfrac{5}{2}\)

Ta lại có :

\(M=2+\dfrac{x^2+y^2}{xy}\le2\dfrac{5}{2}=\dfrac{9}{2}\)

Dấu ''='' khi có 1 số bằng 1 và 1 số bằng 2 .

#####Kaito#####

10 tháng 2 2018

a, Xét : 3 - E = 3x^3-3xy-3y^3-x^3-xy-y^2/x^2-xy+y^2

= 2x^2-4xy+2y^2/x^2-xy+y^2

= 2.(x^2-2xy+y^2)/x^2-xy+y^2

= 2.(x-y)^2/x^2-xy+y^2 

>= 0 ( vì x^2-xy+y^2 > 0 )

Dấu "=" xảy ra <=> x-y=0 <=> x=y

Vậy ..........

10 tháng 2 2018

b, Có : (x+1995)^2 = x^2+3990+1995^2 = (x^2-3990x+1995^2)+7980x

= (x-1995)^2 + 7980x >= 7980x

=> M < = x/7980x = 1/7980 ( vì x > 0 )

Dấu "=" xảy ra <=> x-1995=0 <=> x=1995

Vậy ...............

1 tháng 4 2020

Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :

Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath

Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!

1 tháng 4 2020

B1:

\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=2+\frac{x}{y}+\frac{y}{x}\)

Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)

Thật vậy !!!

\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)

\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)

\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)

\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)

\(\Leftrightarrow2x^2-5xy+2y^2\le0\)

\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )

Dấu "=" xảy ra tại \(x=1;y=2\)

Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)

31 tháng 8 2016

10 

có bài tuong tự rồi nhé

30 tháng 6 2017

a VT=.\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)

=\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\frac{x-1+x\left(x-1\right)+2}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{x^2+2x+1}\)

\(=\frac{4x}{\left(x+1\right)^2}\)=VP

b.VT\(=\frac{2+x}{2-x}.\frac{\left(2-x\right)^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{4-2x+x^2}{2-x}\right)\)

=\(\frac{4-x^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{4-x^2}\right)=\frac{4-x^2}{4x^2}.\frac{2\left(2+x\right)-4}{4-x^2}\)

=\(\frac{2x}{4x^2}=\frac{1}{2x}\)=VP

c VT=.\(\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right).\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)

\(=\left[\frac{3\left(x+y\right)+3x}{\left(x+y\right)\left(x-y\right)}.\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)

\(=\frac{3\left(2x+y\right)\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)\left(2x+y\right)}.\frac{x-y}{3}\)

\(=x+y=\)VP

Vậy các đẳng thức được chứng minh

=

30 tháng 6 2017

C là xy mà ko phải x+y