Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số dư là R
thương là g(x)
ta có:
\(x^{2017}+2017x^2+2017x+1=\left(x-1\right).g\left(x\right)+R\)
vậy tại giá trị x=1 thì
\(x^{2017}+2017x^2+2017x+1=R\)
hay
\(1^{2017}+2017.1^2+2017.1+1=R\)
=>R=4036
bạn lên google gõ định lý bêdu nha áp dungj định lý này ta có f(x) chia cho x-1 có số dư là f(1)=\(1^{2017}\)+2017.1+2017+1=4036
Tim n voi so tu nhien,cmr
a,5n+2 + 26 . 5n + 82n+1 chia het cho 59
b,7 . 52n + 12 . 6n chia het cho 19
Ta có:
\(a=7k+3\)
\(\Rightarrow a^2=\left(7k+3\right)^2=49k^2+42k+9\)
Vì \(49k^2⋮7;42k⋮7;\)9 chia 7 dư 2 nên
\(49k^2+42k+9\) chia 7 dư 2.
Vậy \(a^2\) chia 7 dư 2(đpcm)
Chúc bạn học tốt!!!
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
Ta có:
\(n\div7\left(R=4\right)\Rightarrow R=4\div R7=4\)
\(\Leftrightarrow n^2\div7\left(R=4^2\div R7=2\right)\)
\(\Leftrightarrow n^3\div7\left(R=4^3\div R7=1\right)\)
Vậy khi n2 : 7 có số dư là 2; n3 : 7 có số dư là 1