K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2017

https://olm.vn/hoi-dap/question/997557.html

Mk làm rồi nhé : Ấn vào đây 

16 tháng 9 2017

\(4^n⋮4\)

Nếu n=0 thì:\(4^n=4^0=1\)=> không phải là hợp số 

Ta có: n>1 =>4là hợp số 

\(n^4⋮n;n>1\)=>n4 là hợp số

Vậy n4+4n là hợp số

21 tháng 2 2020

n là số tự nhiên lớn hơn 1 nên n có dạng \(n=2k\) hoặc \(n=2k+1\) với k là
số tự nhiên lớn hơn 0.

- Với \(n=2k\), ta có \(n^4+4^n=\left(2k\right)^4+4^{2k}\) lớn hơn 2 và chia hết cho 2. Do đó \(n^4+4^n\)là hợp số 

- Với n = 2k+1 ta có :
\(n^4+4^n=n^4+4^{2k}.4=n^4+\left(2.4^k\right)^2=\left(n^2+2.4^k\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2.4^k-2.n.2^k\right)\left(n^2+2.4^k+2.n.2^k\right)\)

\(=\left[\left(n-2^k\right)^2+4^k\right]\left[\left(n+2^k\right)^2+4^k\right]\)

Mỗi thừa số đều lớn hơn hoặc bằng 2. Vậy n4 + 4n là hợp sô

Chúc bạn học tốt !!!

31 tháng 12 2015

m^2-n^2=(m+n)(m-n) 
...Nhưng vì m^2-n^2 là số nguyên tố nên trong 2 thừa số, thừa số nhỏ hơn phải bằng 1, tức m-n=1.Vậy m và n là 2 số tự nhiên liên tiếp 

cho tich

23 tháng 5 2017

Với n chẵn thì tổng đó thì tổng đó là hợp số vì chia hết cho 2

Vói n lẻ thì n=2k+1, thì ta có:

n4+42k+1=(n2+22k+1)2-n2.22k+2=(n2+22k+1+n.2k+1)(n2+22k+1-n.2k+1)

Chỉ cần chứng minh cả hai cái đó lớn hơn 1 là được

Ta có: \(n^2+2^{2k+1}\ge2.n.2\frac{2k+1}{2}=n.2^{k+1}\)

Vì n lẻ >1nên n2+22k+1-n.2k+1>1

Vậy số đó là hợp số

19 tháng 7 2017

shut up and go out

18 tháng 10 2016

Với n chẵn thì tổng đó là hợp số vì chia hết cho 2

Với n lẻ thì n = 2k + 1 thì ta có

n4 + 42k+1 = (n2 + 22k+1)2 - n2.22k+2 = (n2 + 22k+1 + n.2k+1)(n+ 22k+1 - n.2k+1)

Chỉ cần chứng minh cả 2 cái đó lớn hơn 1 là được

Ta có n+ 22k+1\(\ge\)\(2.n.2^{\frac{2k+1}{2}}=n.2^{k+1}\)

Vì n lẻ và > 1 nên n+ 22k+1 - n.2k+1 > 1

Vậy số đó là hợp số

20 tháng 9 2019

Với n chẵn thì tổng đó là hợp số vì chia hết cho 2

Với n lẻ thì n = 2k + 1 thì ta có

n4 + 42k+1 = (n2 + 22k+1)2 - n2.22k+2 = (n2 + 22k+1 + n.2k+1)(n2 + 22k+1 - n.2k+1)

Chỉ cần chứng minh cả 2 cái đó lớn hơn 1 là được

Ta có n2 + 22k+1\ge≥2.n.2^{\frac{2k+1}{2}}=n.2^{k+1}2.n.222k+1​=n.2k+1

Vì n lẻ và > 1 nên n2 + 22k+1 - n.2k+1 > 1

Vậy số đó là hợp số

18 tháng 12 2016

bt trên sẽ là  (a4n)+ 3 . a4n  - 4 = (a4n)2 + 4. a4n - a4n -4 = ( a4n + 4)(a4n -1)

mặt khác vì a là số tự nhiên , a không chia hết cho 5

=> a4n = (a2n) là số chính phương chia 5 dư 1 hoặc 4 (vì scp chia 5 dư 0,1,4 - bạn có thể chứng minh = cách xét 1 số x nào đó có số dư cho 5 là 0,1,2,3,4 , đăt dạng của nó (VD như 5k+1 chẳng hạn ) rồi bp lên đc scp của nó để tìm số dư của scp đó cho 5 theo cách tổng quát nhất)

 nếu a4n chia 5 dư 1 => a4n -1 chia hết cho 5 => bt chia hết cho 5

nếu a4n chia 5 dư 4 => a4n -4 chia hết cho 5 => bt chia hết cho 5

 Vậy bt trên chia hết cho 5