\(\frac{a^2b+a^2}{ab+a+b}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

1. Ta có: \(ab+bc+ca=3abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)

Áp dụng Cauchy ta được:

\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)

\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)

\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)

\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)

\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)

\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)

\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)

\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)

\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)

Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)

15 tháng 12 2017

Làm tạm vào đây vậy

từ gt dễ dàng => \(ab+bc+ca\le3\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng cô si ta có

\(\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)

Tương tự như vậy rồi ccộng vào nhá nhok

8 tháng 2 2017

\(BDT\LeftrightarrowΣ\frac{a^2}{a+b^2}\ge\frac{a+b+c}{2}\)

Áp dụng BDT C-S dạng Engel ta có:

\(Σ\frac{a^2}{a+b^2}=\text{ }Σ\frac{a^4}{a^3+a^2b^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{Σa^3+a^2b^2}\)

Vậy đi chứng minh \(\frac{\left(a^2+b^2+c^2\right)^2}{Σa^3+a^2b^2}\ge\frac{a+b+c}{2}\)

Hay \(2\left(a^2+b^2+c^2\right)^2\ge\left(a+b+c\right)Σ\left(a^3+b^2c^2\right)\)

\(\hept{\begin{cases}a+b+c=3u\\ab+ac+bc=3v^2\\abc=w^3\end{cases}}\)

Bởi vì điều kiện không phụ thuộc vào \(w^3\), ta thấy rằng bất đẳng thức cuối cùng là một bất đẳng thức tuyến tính của \(w^3\), đủ để chứng minh rằng bất đẳng thức cuối cùng đạt một giá trị cực đại là \(w^3\), xảy ra trong trường hợp hai biến bằng nhau hoặc có thể cho \(w^3\rightarrow0^+\)

Sau khi biến đổi đồng nhất ta cần chứng minh.

  

\(\left(2\left(a^2+b^2+c^2\right)^2-\left(a+b+c\right)\left(a^3+b^3+c^3\right)\right)^2\left(a^2+b^2+c^2\right)\)

\(\ge3\left(a+b+c\right)^2\left(a^2b^2+a^2c^2+b^2c^2\right)^2\)

*)\(b=c=1\) Ta được

\(\left(a-1\right)^2\left(a^8-2a^7+17a^6-8a^5+75a^4-10a^3+73a^2-4a+20\right)\ge0\) ( hiển nhiên đúng)

*)\(w^3\rightarrow0^+\) để  \(c\rightarrow0^+\) và \(b=1\), ta đc:

\(a^{10}-2a^9+10a^8-12a^7+26a^6-26a^5+26a^4-12a^3+10a^2-2a+1\ge0\)( cũng đúng)

8 tháng 2 2017

cách này phiêu quá lát mk làm lại

25 tháng 3 2020

Ta CM BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},a+b\ge2\sqrt{ab}\)( co si với a,b>0)

Suy ra \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\RightarrowĐPCM\)\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)

a/Áp dụng (1) có

\(\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\left(2\right)\).Tương tự ta cũng có:

\(\frac{1}{b+c+2a}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\left(3\right),\frac{1}{c+a+2b}\le\frac{1}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\left(4\right)\)

Cộng (2),(3) và (4) có \(VT\le\frac{1}{4}.\left(6+6\right)=3\left(ĐPCM\right)\)

b/Áp dụng (1) có:

\(\frac{1}{3a+3b+2c}=\frac{1}{\left(a+b+2c\right)+2\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{2\left(a+b\right)}\right)\left(5\right)\)

Tương tự có: \(\frac{1}{3a+2b+3c}\le\frac{1}{4}\left(\frac{1}{a+c+2b}+\frac{1}{2\left(a+c\right)}\right)\left(6\right)\)

\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{2a+b+c}+\frac{1}{2\left(b+c\right)}\right)\left(7\right)\)

Cộng (5),(6) và (7) có:

\(VT\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{a+c+2b}+\frac{1}{2a+b+c}+\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\right)\le\frac{1}{4}.9=\frac{3}{2}\)

26 tháng 3 2020

Chéc khó nhỉ

18 tháng 3 2017

Xét \(\frac{2a+bc}{a+c}=\frac{a\left(a+b+c\right)+bc}{a+c}=\frac{a^2+ab+ac+bc}{a+c}=\frac{\left(a+b\right)\left(a+c\right)}{a+c}=a+b\)(thay 2=a+b+c)

Tương tự \(\frac{2b+ac}{a+b}=b+c\)và \(\frac{2c+ab}{c+b}=c+a\)

\(\Rightarrow M=\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\)

\(M=2.\left(a+b+c\right)\)

\(M=4\)

1 tháng 8 2020

Ta có BĐT sau:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Leftrightarrow a^3+b^3+c^3+ab^2+bc^2+ca^2\ge2a^2b+2b^2c+2c^2a\)

Sử dụng AM - GM ta dễ có được:

\(a^3+ab^2\ge2\sqrt{a^4b^2}=2a^2b\)

\(b^3+bc^2\ge2\sqrt{b^4c^2}=2b^2c\)

\(c^3+c^2a\ge2\sqrt{c^4a^2}=2c^2a\)

\(\Rightarrow BĐT\) đầu tiên đúng

Khi đó ta có:

\(a^2+b^2+c^2\ge a^2b+b^2c+c^2a\Rightarrow P\ge a^2b+b^2c+c^2a+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)

Một vài đánh giá cơ bản rồi đặt ẩn phụ rồi xét đạo hàm phát ra nhé

1 tháng 8 2020

@huybip5cc, bn giải kĩ ra giúp mk nhé, mk dốt lắm, nhìn vậy ko hiểu đâu ạ, mơn nh!

23 tháng 12 2017

Ta có : \(p=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(a+c\right)}+\frac{ab}{c^2\left(a+b\right)}\)

Áp dụng bất đẳng thức AM - GM ta có :

\(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4ab}}=\frac{1}{a}\)

\(\frac{ac}{b^2\left(a+c\right)}+\frac{a+c}{4ac}\ge4\sqrt{\frac{ac}{b^2\left(a+c\right)}.\frac{a+c}{4ac}}=\frac{1}{b}\)

\(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}.\frac{a+b}{4ab}}=\frac{1}{c}\)

Cộng vế với vế ta được \(p+\frac{1}{4c}+\frac{1}{4a}+\frac{1}{4b}+\frac{1}{4a}+\frac{1}{4c}+\frac{1}{4b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow p+\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow p\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge3\sqrt[3]{\frac{1}{2a.2b.2c}}=\frac{3}{\sqrt[3]{8abc}}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

19 tháng 8 2020

Xét: \(\frac{bc}{a^2b+ca^2}=\frac{bc}{a\cdot abc\cdot\frac{1}{c}+a\cdot abc\cdot\frac{1}{b}}=\frac{b^2c^2}{ab+ca}\)(*)

Tương tự với (*) ta có: \(\hept{\begin{cases}\frac{ca}{b^2c+ab^2}=\frac{c^2a^2}{ab+bc}\\\frac{ab}{c^2a+bc^2}=\frac{a^2b^2}{ca+bc}\end{cases}}\)

\(\Rightarrow\Sigma_{cyc}\frac{bc}{a^2b+ca^2}=\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\)

Ta thấy\(\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\) có dạng: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\left(a+b+c\right)\)

Bước cuối Cô-si ba số và kết hợp điều kiện abc=1 là xong